Direct Correlations of Grain Boundary Potentials to Chemical States and Dielectric Properties of Doped CaCu3Ti4O12 Thin Films

2018 ◽  
Vol 10 (18) ◽  
pp. 16203-16209 ◽  
Author(s):  
Ahra Cho ◽  
Chan Su Han ◽  
Meenjoo Kang ◽  
Wooseok Choi ◽  
Jihwan Lee ◽  
...  
2006 ◽  
Vol 86 (1) ◽  
pp. 159-169 ◽  
Author(s):  
SU-JAE LEE ◽  
HAN-CHEOL RYU ◽  
YOUNG-TAE KIM ◽  
MIN-HWAN KWAK ◽  
SEUNGEON MOON ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3294
Author(s):  
Jakkree Boonlakhorn ◽  
Jedsada Manyam ◽  
Pornjuk Srepusharawoot ◽  
Sriprajak Krongsuk ◽  
Prasit Thongbai

The effects of charge compensation on dielectric and electrical properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics (x = 0−0.05) prepared by a solid-state reaction method were studied based on the configuration of defect dipoles. A single phase of CaCu3Ti4O12 was observed in all ceramics with a slight change in lattice parameters. The mean grain size of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics was slightly smaller than that of the undoped ceramic. The dielectric loss tangent can be reduced by a factor of 13 (tanδ ~0.017), while the dielectric permittivity was higher than 104 over a wide frequency range. Impedance spectroscopy showed that the significant decrease in tanδ was attributed to the highly increased resistance of the grain boundary by two orders of magnitude. The DFT calculation showed that the preferential sites of Al and Nb/Ta were closed together in the Ti sites, forming self-charge compensation, and resulting in the enhanced potential barrier height at the grain boundary. Therefore, the improved dielectric properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics associated with the enhanced electrical properties of grain boundaries. In addition, the non-Ohmic properties were also improved. Characterization of the grain boundaries under a DC bias showed the reduction of potential barrier height at the grain boundary. The overall results indicated that the origin of the colossal dielectric properties was caused by the internal barrier layer capacitor structure, in which the Schottky barriers at the grain boundaries were formed.


2009 ◽  
Vol 321 (20) ◽  
pp. 3373-3379 ◽  
Author(s):  
Lakshmikanta Aditya ◽  
J. Nanda ◽  
I. Samajdar ◽  
N. Venkataramani ◽  
Shiva Prasad

2013 ◽  
Vol 102 (2) ◽  
pp. 022904 ◽  
Author(s):  
Ayan Roy Chaudhuri ◽  
A. Fissel ◽  
V. R. Archakam ◽  
H. J. Osten

Sign in / Sign up

Export Citation Format

Share Document