Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering

2019 ◽  
Vol 11 (40) ◽  
pp. 36359-36370 ◽  
Author(s):  
Yaqiang Li ◽  
Yanqun Liu ◽  
Xiaowei Xun ◽  
Wei Zhang ◽  
Yong Xu ◽  
...  
Biomaterials ◽  
2004 ◽  
Vol 25 (18) ◽  
pp. 4149-4161 ◽  
Author(s):  
T.B.F. Woodfield ◽  
J. Malda ◽  
J. de Wijn ◽  
F. Péters ◽  
J. Riesle ◽  
...  

2016 ◽  
Vol 4 (21) ◽  
pp. 3670-3684 ◽  
Author(s):  
Nandana Bhardwaj ◽  
Yogendra Pratap Singh ◽  
Dipali Devi ◽  
Raghuram Kandimalla ◽  
Jibon Kotoky ◽  
...  

A three-dimensional porous scaffolds based on muga silkworm, Antheraea assamensis was fabricated and well characterized for cartilage tissue engineering, which may present as noteworthy targets for the further development in chondrocytes based cartilage repair.


2016 ◽  
Vol 104 (11) ◽  
pp. 2764-2774 ◽  
Author(s):  
Amir Mellati ◽  
Meisam Valizadeh Kiamahalleh ◽  
S. Hadi Madani ◽  
Sheng Dai ◽  
Jingxiu Bi ◽  
...  

2016 ◽  
Vol 4 (20) ◽  
pp. 3562-3574 ◽  
Author(s):  
E. A. Aisenbrey ◽  
S. J. Bryant

Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering.


Author(s):  
Hui Wang ◽  
Zhonghan Wang ◽  
He Liu ◽  
Jiaqi Liu ◽  
Ronghang Li ◽  
...  

Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.


2018 ◽  
Vol 83 ◽  
pp. 195-201 ◽  
Author(s):  
Xingchen Yang ◽  
Zhenhui Lu ◽  
Huayu Wu ◽  
Wei Li ◽  
Li Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document