In Situ Gelling Scaffolds Loaded with Platelet Growth Factors to Improve Cardiomyocyte Survival after Ischemia

2018 ◽  
Vol 5 (1) ◽  
pp. 329-338 ◽  
Author(s):  
Francesca Saporito ◽  
Lauren M. Baugh ◽  
Silvia Rossi ◽  
Maria Cristina Bonferoni ◽  
Cesare Perotti ◽  
...  
Author(s):  
Kranti Singh ◽  
Surajpal Verma ◽  
Shyam Prasad ◽  
Indu Bala

Ciprofloxacin hydrochloride loaded Eudragit RS100 nanoparticles were prepared by using w/o/w emulsification (multiple emulsification) solvent evaporation followed by drying of nanoparticles at 50°C. The nanoparticles were further incorporated into the pH-triggered in situ gel forming system which was prepared using Carbopol 940 in combination with HPMC as viscosifying agent. The developed nanoparticles was evaluated for particle size, zeta potential value and loading efficiency; nanoparticle incorporated in situ gelling system was evaluated for pH, clarity, gelling strength, rheological studies, in-vitro release studies and ex-vivo precorneal permeation studies. The nanopaticle showed the mean particle size varying between 263.5nm - 325.9 nm with the mean zeta potential value of -5.91 mV to -8.13 mV and drug loading capacity varied individually between 72.50% to 98.70% w/w. The formulation was clear with no suspended particles, showed good gelling properties. The gelling was quick and remained for longer time period. The developed formulation was therapeutically efficacious, stable and non-irritant. It provided the sustained release of drug over a period of 8-10 hours.


Spine ◽  
2008 ◽  
Vol 33 (7) ◽  
pp. 748-754 ◽  
Author(s):  
Mohammed F. Shamji ◽  
Lyman Whitlatch ◽  
Allan H. Friedman ◽  
William J. Richardson ◽  
Ashutosh Chilkoti ◽  
...  

2006 ◽  
Vol 7 (8) ◽  
pp. 2461-2463 ◽  
Author(s):  
Michal Y. Krasko ◽  
Neeraj Kumar ◽  
Abraham J. Domb

2016 ◽  
Vol 4 (25) ◽  
pp. 4410-4419 ◽  
Author(s):  
Yuankun Dai ◽  
Gang Liu ◽  
Lie Ma ◽  
Dongan Wang ◽  
Changyou Gao

Macro-porous fibrin scaffold was fabricated and used to induce cartilage regenerationin situwithout pre-loaded cells or growth factors.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 25-31
Author(s):  
M Priyanka ◽  
◽  
F. S. Dasankoppa ◽  
H. N Sholapur ◽  
NGN Swamy ◽  
...  

The poor bioavailability and the therapeutic effectiveness exhibited by the anti-depressant venlafaxine hydrochloride on oral administration is overcome by the use of ion-activated gel forming systems that are instilled as drops; these undergo gelation in the nasal cavity. The present study describes the design, characterization and evaluation of mucoadhesive nasal in situ gelling drug delivery of venlafaxine hydrochloride using different polymers like sodium alginate, HPMC and pectin in various concentrations. DSC studies revealed compatibility of the drug and excipients used. The in situ gels were characterized for physicochemical parameters, gelling ability, rheological studies, drug content, drug entrapment efficiency, in vitro mucoadhesive strength, water holding capacity, gel expansion coefficient and in vitro drug release studies. The amount of polymer blends was optimized using 23 full factorial design. The influence of experimental factors on percentage cumulative drug release at the end of 2 and 8 hours were investigated to get optimized formulation. The responses were analyzed using ANOVA and polynomial equation was generated for each response using multiple linear regression analysis. Optimized formulation, F9, containing 1.98% w/V sodium alginate, 0.64% w/V hydroxylpropyl methylcellulose, 0.99% w/V pectin showed percentage cumulative drug release of 19.33 and 80.44 at the end of 2 and 8 hours, respectively, which were close to the predicted values. The optimized formulation was subjected to stability study for three months at 300C /75% RH. The stability study revealed no significant change in pH, drug content and viscosity. Thus, venlafaxine hydrochloride nasal mucoadhesive in situ gel could be successfully formulated to improve bioavailability and to target the brain.


Sign in / Sign up

Export Citation Format

Share Document