scholarly journals Formic Acid Photoreforming for Hydrogen Production on Shape-Controlled Anatase TiO2 Nanoparticles: Assessment of the Role of Fluorides, {101}/{001} Surfaces Ratio, and Platinization

ACS Catalysis ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 6692-6697 ◽  
Author(s):  
Francesco Pellegrino ◽  
Fabrizio Sordello ◽  
Lorenzo Mino ◽  
Claudio Minero ◽  
Vasile-Dan Hodoroaba ◽  
...  
2009 ◽  
Vol 113 (36) ◽  
pp. 15862-15867 ◽  
Author(s):  
Michel Posternak ◽  
Alfonso Baldereschi ◽  
Bernard Delley

2016 ◽  
Vol 4 (38) ◽  
pp. 14649-14656 ◽  
Author(s):  
Masaharu Tsuji ◽  
Daisuke Shimamoto ◽  
Keiko Uto ◽  
Masashi Hattori ◽  
Hiroki Ago

The hydrogen production rate of AgPd@Pd/TiO2 nanocatalysts from formic acid decomposition was enhanced by 50–60% at room temperature under photoirradiation.


2018 ◽  
Author(s):  
Xun Zhu ◽  
Qiang Liao ◽  
Rong Chen ◽  
Ao Xia ◽  
Chao Zhang ◽  
...  

2021 ◽  
Vol 45 ◽  
pp. 101078
Author(s):  
Samuel Eshorame Sanni ◽  
Peter Adeniyi Alaba ◽  
Emeka Okoro ◽  
Moses Emetere ◽  
Babalola Oni ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3258
Author(s):  
Hamed M. Alshammari ◽  
Mohammad Hayal Alotaibi ◽  
Obaid F. Aldosari ◽  
Abdulellah S. Alsolami ◽  
Nuha A. Alotaibi ◽  
...  

The present study investigates a process for the selective production of hydrogen from the catalytic decomposition of formic acid in the presence of iridium and iridium–palladium nanoparticles under various conditions. It was found that a loading of 1 wt.% of 2% palladium in the presence of 1% iridium over activated charcoal led to a 43% conversion of formic acid to hydrogen at room temperature after 4 h. Increasing the temperature to 60 °C led to further decomposition and an improvement in conversion yield to 63%. Dilution of formic acid from 0.5 to 0.2 M improved the decomposition, reaching conversion to 81%. The reported process could potentially be used in commercial applications.


Sign in / Sign up

Export Citation Format

Share Document