scholarly journals Cryo-Ground Mango Kernel Powder: Characterization, LC-MS/MS Profiling, Purification of Antioxidant-Rich Gallic Acid, and Molecular Docking Study of Its Major Polyphenols as Potential Inhibitors against SARS-CoV-2 Mpro

Author(s):  
Bhupinder Kaur ◽  
Himadri Sekhar Maity ◽  
Madhulekha Rakshit ◽  
Prem Prakash Srivastav ◽  
Ahindra Nag
2021 ◽  
pp. 131007
Author(s):  
Norhadi Mohamad ◽  
Phua Yoong Hui ◽  
Mohamad Hafizi Abu Bakar ◽  
Mohammad Tasyriq Che Omar ◽  
Habibah A. Wahab ◽  
...  

2020 ◽  
Vol 754 ◽  
pp. 137751 ◽  
Author(s):  
Pius T. Mpiana ◽  
Koto-te-Nyiwa Ngbolua ◽  
Damien S.T. Tshibangu ◽  
Jason T. Kilembe ◽  
Benjamin Z. Gbolo ◽  
...  

2020 ◽  
Author(s):  
Sourav Das ◽  
Atanu Singha Roy

<i>Background:</i> The novel coronavirus (COVID-19) has quickly spread throughout the globe, affecting millions of people. The World Health Organization (WHO) has recently declared this infectious disease as a pandemic. At present, several clinical trials are going on to identify possible drugs for treating this infection. SARS-CoV-2 M<sup>pro</sup> is one of the most critical drug targets for the blockage of viral replication. <i>Method:</i> The blind molecular docking analyses of natural anthraquinones with SARS-CoV-2 M<sup>pro</sup> were carried out in an online server, SWISSDOCK, which is based on EADock DSS docking software. <i>Results: </i>Blind molecular docking studies indicated that several<i> </i>natural antiviral anthraquinones could prove to be effective inhibitors for SARS-CoV-2 M<sup>pro</sup> of COVID-19 as they bind near the active site having the catalytic dyad, HIS41 and CYS145 through non-covalent forces. The anthraquinones showed less inhibitory potential as compared to the FDA approved drug, remdesivir.<i></i> <p><b><i>Conclusion:</i></b><i> </i>Among the natural anthraquinones<i>, </i>alterporriol Q could be the most potential inhibitor of SARS-CoV-2 M<sup>pro</sup> among the natural anthraquinones studied here, as its ∆<i>G</i> value differed from that of remdesivir only by 0.51 kcal/ mol. The uses of these alternate compounds might be favorable for the treatment of the COVID-19.</p>


2020 ◽  
Vol 9 (3) ◽  
pp. 1217-1224

Coronavirus (COVID-19) is more than a health disaster;it is the greatest challenge that the world confrontsnowadays. There is a race to slow the spread of this disease. Searching for an antiviral agent to stop COVID-19 is an essential demand since there is no approved drug for COVID-19 till now. Molecular docking is a powerful tool in predicting new drugs. In this study, Favpiravir (Avigan), Hydroxychloroquine, and a series of biologically active compounds derived from iso-nicotinoyl hydrazide have been chosen for molecular docking study. Molecular docking was carried out by theMolegro virtual docker program on proteaseenzyme of COVID-19.The results showed that all the studied molecules are located in the active sites of protease after molecular docking. The tested nicotinoyl hydrazide derivatives showed a higher ranking docking score than Favpiravir (Avigan). According to the docking score ranking rearrangement, Hydroxychloroquine comes the third, and Favpiravir comes the last among the tested compounds. N(2-iso-nicotinoyl hydrazine-carbonthioyl)benzamide(2) and the enol form of (E)-N-(1-phenylethylidene)-nicotinohydrazide(7) have shown the highest docking score (123.23 and -123.12 kcal/mol respectively) among the tested compounds. Ligands (2) and (7) are expected to be potential inhibitors of the main protease enzyme of coronavirus.


Sign in / Sign up

Export Citation Format

Share Document