protease enzyme
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 175)

H-INDEX

20
(FIVE YEARS 4)

2023 ◽  
Vol 83 ◽  
Author(s):  
F. Asad ◽  
A. Ashraf ◽  
A. Rafique ◽  
S. Qamer ◽  
S. Naz ◽  
...  

Abstract A ninety days nutritional trial was directed to explore the effects of dietary chromium on body composition, gut enzyme activity and physiological status of Cirrhinus mrigala by using G & NG corn. Six experimental diets were prepared by using different levels of chromium chloride hexahydrate (0, 0.2, 0.4 mg/kg, each with G & NG corn). For this experimental trial, 480 fingerlings, irrespective of sex were distributed in six aquariums each with replicate. Results revealed that gelatinized corn along with increasing level of Cr2Cl3.6H2O have a positive impact upon body composition of fish. Hematology was positively correlated with chromium chloride hexahydrate supplementation in gelatinized corn. Amylase gut enzyme also showed significant (P<0.05) increase in group fed with chromium chloride hexahydrate supplemented diet (G corn). However, corn with chromium chloride hexahydrate supplementation did not revealed any significant impact on gut protease enzyme activity. From these results it can be concluded that both chromium chloride hexahydrate and gelatinized corn in fish feed are very beneficial to improve body composition, enzymes activity and physiological health status of fish.


Medicina ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 20
Author(s):  
Noha A. Kamel ◽  
Nasser S. M. Ismail ◽  
Ibrahim S. Yahia ◽  
Khaled M. Aboshanab

Despite the advance in the management of Coronavirus disease 2019 (COVID-19), the global pandemic is still ongoing with a massive health crisis. COVID-19 manifestations may range from mild symptoms to severe life threatening ones. The hallmark of the disease severity is related to the overproduction of pro-inflammatory cytokines manifested as a cytokine storm. Based on its anti-inflammatory activity through interfering with several pro and anti-inflammatory pathways, colchicine had been proposed to reduce the cytokine storm and subsequently improve clinical outcomes. Molecular docking analysis of colchicine against RNA-dependent RNA polymerase (RdRp) and protease enzymes of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) revealed that colchicine provided a grid-based molecular docking method, C-DOCKER interaction energy 64.26 and 47.53 (Kcal/mol) with protease and RdRp, respectively. This finding indicated higher binding stability for colchicine–protease complexes than the colchicine–RdRp complex with the involvement of seven hydrogen bonds, six hydrogen acceptors with Asn142, Gly143, Ser144, and Glu166 and one hydrogen-bond donors with Cys145 of the protease enzyme. This is in addition to three hydrophobic interactions with His172, Glu166, and Arg188. A good alignment with the reference compound, Boceprevir, indicated high probability of binding to the protease enzyme of SARS-CoV-2. In conclusion, colchicine can ameliorate the destructive effect of the COVID-19 cytokine storm with a strong evidence of antiviral activity by inhibiting the protease enzyme of SARS-CoV-2.


Author(s):  
D. Manimekalai ◽  
G. Senthilkumar ◽  
V. Ambikapathy ◽  
A. Panneerselvam

In the present study, the soil samples were collected from marine environment of Arichalmunai,  Dhanushkodi, Ramnad District, Tamilnadu ,India. Fungal species were isolated by plating method, in 50% sea water containing potato dextrose agar medium .Totally 16 fungal species were isolated and identified from the soil sample. The production of protease from Aspergillus niger , A.flavus and A. terreus by liquid state fermentation. The production of     protease  enzyme was optimized by using fermentation medium containing different substrates. The maximum protease production was observed on wheat bran, containing medium. The protease production was maximum in temperature 35ºC were recorded. Wheat bran produced the maximum level protease. The optimization work also carried out.  This study revealed that coastal environment provides impressive density of fungi in the East Coast of India and are unexplored  for microbial resources can be useful in industry.


2021 ◽  
Author(s):  
Aswani S. S. ◽  
Mithra. S. Mohan ◽  
Aparna. N. S. ◽  
P. T. Boban ◽  
Saja Kamalamma

Abstract ADAMTS-4 is a protease enzyme which involves in vascular remodeling and atherosclerosis. It was found to be upregulated in macrophages seen in atherosclerotic lesions. The aim of this study was to investigate the expression and regulation of ADAMTS-4 in oxLDL induced human monocytes/macrophages system. PBMCs isolated from human blood(hPBMCs), treated with oxLDL (50μg/ml) were used as the model system for the study. mRNA and protein expressions were studied by qRT-PCR, ELISA, and western blot analysis. ROS production and cell viability were determined by fluorescence imaging and MTT assay respectively. In the presence of oxLDL, monocytes get differentiated into macrophages, which were confirmed by the increased expression of CD-36, b- D glucuronidase activity and by the morphological changes. OxLDL increased the mRNA and protein expression of ADAMTS-4 and TIMP-3 in monocytes/ macrophages. A significant increase in the mRNA and protein expression of TNF-α was also observed in oxLDL treated cells compared to untreated control. In the presence of NAC, the ROS scavenger, the production of NFκB and ADAMTS-4 was decreased significantly. Our study suggests that oxLDL significantly upregulated the expression of ADAMTS-4 in the monocyte/macrophage system. OxLDL mediated upregulation of ADAMTS-4 in hPBMCs involves TNF-α and ROS- NFκB pathway.


2021 ◽  
Vol 11 (12) ◽  
pp. 1294
Author(s):  
Sujoita Sen ◽  
Logan Hallee ◽  
Chi Keung Lam

Heart diseases are some of the most common and pressing threats to human health worldwide. The American Heart Association and the National Institute of Health jointly work to annually update data on cardiac diseases. In 2018, 126.9 million Americans were reported as having some form of cardiac disorder, with an estimated direct and indirect total cost of USD 363.4 billion. This necessitates developing therapeutic interventions for heart diseases to improve human life expectancy and economic relief. In this review, we look into gamma-secretase as a potential therapeutic target for cardiac diseases. Gamma-secretase, an aspartyl protease enzyme, is responsible for the cleavage and activation of a number of substrates that are relevant to normal cardiac development and function as found in mutation studies. Some of these substrates are involved in downstream signaling processes and crosstalk with pathways relevant to heart diseases. Most of the substrates and signaling events we explored were found to be potentially beneficial to maintain cardiac function in diseased conditions. This review presents an updated overview of the current knowledge on gamma-secretase processing of cardiac-relevant substrates and seeks to understand if the modulation of gamma-secretase activity would be beneficial to combat cardiac diseases.


Author(s):  
Annie Basson ◽  
Phillip E. Strydom ◽  
Esté van Marle-Köster ◽  
Edward C. Webb ◽  
Lorinda Frylinck

The most important factor that determines beef tenderness is its proteolytic activity and the balance between calpain1 protease activity and calpastatin inhibition is especially important, while contributions could arise from calpain2 and possibly calpain3. These processes are however affected by the meat aging process itself. To determine whether genotypes in the calpaincalpastatin system can enhance tenderness throughout a 20 day aging period, South African purebred beef bulls (n=166) were genotyped using the Illumina BovineHD SNP BeadChip, through genebased association analysis targeting the cast, capn3, capn2 and capn1 genes. The WarnerBratzler shear force (WBSF) and myofibril fragment length (MFL) of Longissimus thoracis et lumborum (LTL) steaks were evaluated between d 3 d 20 of aging, with protease enzyme activity in the first 20 h postmortem. Although several of the 134 SNP associated with tenderness, only seven SNP in the cast, capn2 and capn1 genes sustained genetic associations, additive to agingassociated increases in tenderness for at least three of the four aging periods. While most genomic associations were relatively stable over time, some genotypes within SNP responded differently to aging, resulting in altered genomic effects over time. The level of aging at which genomic associations are performed is an important factor that determines whether SNP affect tenderness phenotypes.


2021 ◽  
Author(s):  
Tayachew Desalegn ◽  
◽  
Ketema Bacha ◽  
Mesfin Tafesse ◽  
Chandran Masi ◽  
...  

Protease also called proteinase or peptidase is a digestive enzyme that is categorized under proteolytic enzymes and it has great potential in industrial application. Extracellular proteases are used in a variety of industries because they exhibit practically all of the characteristics needed for biotech applications such as detergent, bioremediation, food, and leather processing. In the synthesis of all three major types of acidic, neutral, and alkaline proteases, microbial sources have dominated an unbeatable area. Alkaline proteases are a large group of industrial enzymes formed by a wide variety of species, including animals, fungi, and bacteria. The fermentation method serves to make bacteria, fungi, and yeast alkaline proteases. Proteases are produced in large quantities by Gram-positive bacteria, especially those belonging to the Bacillus genus. Following standard procedures, the bacterial isolates PMOJ-01 and PMOJ-05 with the prominent zone of clearance and efficient enzyme development were further characterized to the genus level. Moreover, the growth conditions for the highest protease production were optimized with different pH, temperatures, and NaCl concentrations, in the results of PMOJ-01 and PMOJ- 05 pH (7 and 8), temperatures 45oC, and 1% NaCl concentrations both cases respectively. The proteases activities from PMOJ-01, Pseudomonas aeruginosa, and PMOJ-05, Bacillus subtilis were most active at pH 7.0 and pH 8.0 and temperature at 35oC and 45oC, respectively. The enzyme activity and the total solid protease sample of the crude enzyme of Pseudomonas aeruginosa and Bacillus subtilis were 0.299 U/ mL and 0.289 U/ mL, 1.37±0.14 U/mg, and 1.199 U/mg respectively. The effect on dehairing, distaining, and scum removal revealed that the purified protease enzyme of PMOJ-01 and PMOJ-05 can be used in detergent and leather industries.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2221
Author(s):  
Adila Fazliyana Aili Hamzah ◽  
Muhammad Hazwan Hamzah ◽  
Hasfalina Che Man ◽  
Nur Syakina Jamali ◽  
Shamsul Izhar Siajam ◽  
...  

Pineapple waste accounts for a significant part of waste accumulated in landfill which will further contribute to the release of greenhouse gases. With the rising pineapple demands worldwide, the abundance of pineapple waste and its disposal techniques are a major concern. Exploiting the pineapple waste into valuable products could be the most sustainable way of managing these residues due to their useful properties and compositions. In this review, we concentrated on producing useful products from on-farm pineapple waste and processing waste. Bioenergy is the most suitable option for green energy to encounter the increasing demand for renewable energy and promotes sustainable development for agricultural waste. The presence of protease enzyme in pineapple waste makes it a suitable raw material for bromelain production. The high cellulose content present in pineapple waste has a potential for the production of cellulose nanocrystals, biodegradable packaging and bio-adsorbent, and can potentially be applied in the polymer, food and textile industries. Other than that, it is also a suitable substrate for the production of wine, vinegar and organic acid due to its high sugar content, especially from the peel wastes. The potentials of bioenergy production through biofuels (bioethanol, biobutanol and biodiesel) and biogas (biomethane and biohydrogen) were also assessed. The commercial use of pineapples is also highlighted. Despite the opportunities, future perspectives and challenges concerning pineapple waste utilisation to value-added goods were also addressed. Pineapple waste conversions have shown to reduce waste generation, and the products derived from the conversion would support the waste-to-wealth concept.


2021 ◽  
Vol 888 (1) ◽  
pp. 012066
Author(s):  
Nurpaidah ◽  
W Hermana ◽  
M Ridla

Abstract This study aims to determine the effect of adding protease enzyme in diets that contains different levels of winged bean seeds on the growth performance of broiler chickens. In this study, a total of 240 one-day-old chicks were randomly grouped within six treatments and four replicates in a 3×2 factorial arrangements. The first factor was the level of winged bean seeds at 0%, 2.5%, and 5%, while the second was the enzyme treatment with and without protease. The results showed that the additive protease interaction and level of winged bean seeds on the diet had a significant effect on the feed conversion ratio value (P<0.05). Meanwhile, on the feed inateke, final, and body weight gain had no significant effect (p>0.05). Furthermore, the protease treatment significantly decreased feed intake in 35-day old broilers. (P<0.05). Based on these results, the addition of protease enzyme at the levels has the potential to offset the effect of winged bean seeds on growth performance of broiler chickens.


Sign in / Sign up

Export Citation Format

Share Document