Highly Ordered Nanocellular Polymeric Foams Generated by UV-Induced Chemical Foaming

2020 ◽  
Vol 9 (10) ◽  
pp. 1433-1438
Author(s):  
Podchara Rattanakawin ◽  
Kenji Yoshimoto ◽  
Yuta Hikima ◽  
Alvin Chandra ◽  
Teruaki Hayakawa ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2207
Author(s):  
Żaneta Garczyk ◽  
Zbigniew Jaegermann ◽  
Piotr Duda ◽  
Andrzej S. Swinarew ◽  
Sebastian Stach

The main aim of this study was to analyze microtomographic data to determine the geometric dimensions of a ceramic porous material’s internal structure. Samples of a porous corundum biomaterial were the research material. The samples were prepared by chemical foaming and were measured using an X-ray scanner. In the next stage, 3D images of the samples were generated and analyzed using Thermo Scientific Avizo software. The analysis enabled the isolation of individual pores. Then, the parameters characterizing the pore geometry and the porosity of the samples were calculated. The last part of the research consisted of verifying the developed method by comparing the obtained results with the parameters obtained from the microscopic examinations of the biomaterial. The comparison of the results confirmed the correctness of the developed method. The developed methodology can be used to analyze biomaterial samples to assess the geometric dimensions of biomaterial pores.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1872
Author(s):  
James Anthony Dicks ◽  
Chris Woolard

The environmental issues of petroleum-derived polymeric foams have necessitated seeking renewable alternatives. This work aims to prepare renewable free-radically polymerized polymeric foams with the ability to biodegrade. Furthermore, this work attempted to incorporate a bio-based reactive diluent, which has not been reported in the literature. The synthesis of maleated castor oil glycerides was performed with products analyzed by Fourier transform infrared spectrometry using attenuated total reflection (ATR-FTIR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. Polymeric foams were prepared using maleated castor oil glycerides via free radical copolymerization with styrene and isobornyl methacrylate as reactive diluents. Scanning electron microscopy (SEM) was used to determine anisotropic macrocellular morphology, with log-normal cell diameter distributions. The compressive mechanical and energy absorption properties were investigated; the polymeric foams displayed Young’s modulus up to 26.85 ± 1.07 MPa and strength up to 1.11 ± 0.021 MPa using styrene as the reactive diluent, and Young’s modulus up to 1.38 ± 0.055 MPa and strength up to 0.088 MPa when incorporating isobornyl methacrylate. Furthermore, a thorough analysis of the cellular structure–property relationships was performed, indicating relationships to cell diameter, cell wall thickness and apparent density. The polymeric foams displayed rapid mass loss in an aerobic soil environment with multiple erosion sites revealed by SEM. In conclusion, renewable polymeric foams with excellent compressive properties were achieved using styrene as reactive diluent, but the incorporation of isobornyl methacrylate decreased strength-related properties.


Seikei-Kakou ◽  
2017 ◽  
Vol 29 (2) ◽  
pp. 62-68
Author(s):  
Junichiro Tateishi ◽  
Norihiko Taniguchi ◽  
Tsuyoshi Nishiwaki ◽  
Sukumaran Sathish K. ◽  
Masataka Sugimoto

2009 ◽  
Vol 42 (21) ◽  
pp. 214001 ◽  
Author(s):  
S Deschanel ◽  
L Vanel ◽  
N Godin ◽  
E Maire ◽  
G Vigier ◽  
...  

2017 ◽  
Vol 51 (15) ◽  
pp. 8552-8560 ◽  
Author(s):  
Pavani Cherukupally ◽  
Edgar J. Acosta ◽  
Juan P. Hinestroza ◽  
Amy M. Bilton ◽  
Chul B. Park

Sign in / Sign up

Export Citation Format

Share Document