scholarly journals Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals

ACS Nano ◽  
2021 ◽  
Author(s):  
Niclas S. Mueller ◽  
Emanuel Pfitzner ◽  
Yu Okamura ◽  
Georgy Gordeev ◽  
Patryk Kusch ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Li Yuan ◽  
Jinghuai Fang ◽  
Yonglong Jin ◽  
Chaonan Wang ◽  
Tian Xu

We fabricated a simple, cheap, and functional surface enhanced Raman scattering substrate for biomedical application. Hot spots between two close silver nanoparticles distributed in the skeleton of a three-dimensional porous membrane, especially in the pores, were formed. The dual poles of micropores in the membrane were discussed. The pores could protect the silver nanoparticles in the pores from being oxidized, which makes the membrane effective for a longer period of time. In addition,Staphylococcus aureuscells could be trapped by the micropores and then the Raman signal became stronger, indicating that the functional surface enhanced Raman scattering substrate is reliable.


2014 ◽  
Vol 979 ◽  
pp. 255-258
Author(s):  
Attawit Supati ◽  
Puenisara Limnonthakul ◽  
Saksorn Limwichean ◽  
Woraphan Chaisriratanakul ◽  
Pitak Eiamchai ◽  
...  

Three-dimensional (3D)-hybrid surface-enhanced Raman scattering (SERS) substrates have been achieved via simultaneous assembled silver nanoparticles (AgNPs) onto the anodic aluminum oxide (AAO) templates. The AAO templates were prepared from the UHV aluminum foil in 0.3 M oxalic acid using the two-step anodization process at 0°C. The effect of applied voltage ranging from 30 to 50 V on the porous diameter and the inter-porous distance of the AAO templates was investigated and observed with filed-emission scanning electron microscope (FE-SEM). The results showed that the porous distance and the inter-porous distance were linearly increased with the increase in the voltage potentials. To investigate the pore-size effect on the SERS activities, the AgNPs were deposited on the AAO nanoporous templates. The SERS activities of these nanostructures were demonstrated with the methylene blue (MB) as the probing molecules.


2016 ◽  
Vol 71 (5) ◽  
pp. 879-887 ◽  
Author(s):  
Murugesan Balamurugan ◽  
Jyisy Yang

In this work, a simple method via decoration of silver nanoparticles (AgNPs) on electrospun polycarbonate nanofibers (PCNFs) was proposed to prepare highly sensitive three-dimensional (3D) substrates for surface-enhanced Raman scattering (SERS) measurements. The method proposed in this work gave a high sensitive Ag@PCNFs substrate, which resulted from a successful production of high surface area of PCNFs with a high efficiency in the decoration of AgNPs. To produce PCNFs suitable for SERS application, parameters in fabrication of PCNFs were systematically examined and correlated with their corresponding scanning electron microscope (SEM) images. Examined parameters included the concentration of PC solution, the solvent to form PC solution, the applied voltage, and the rotating speed of a drum collector. Using the optimized condition, the bead-free PCNFs with a diameter in the range of 200–400 nm were successfully produced. To increase the efficiency in decoration of AgNPs, the surface properties of PNCFs were altered with an organic solvent, which was selected experimentally with guidance of Hildebrand solubility parameter. Results indicated that methanol was the most suitable solvent to effectively decorate AgNPs on PCNFs. By probing with para-hydroxythiophenol (pHTP), prepared SERS substrates of Ag@PCNFs provided an enhancement factor to the order of 7, which is at least an order of magnitude larger than the reported values in the literature for SERS substrates prepared with the electrospinning technique.


Sign in / Sign up

Export Citation Format

Share Document