scholarly journals Correction to “Kinetically Controlled Sequential Seeded Growth: A General Route to Crystals with Different Hierarchies”

ACS Nano ◽  
2021 ◽  
Author(s):  
Joshua D. Smith ◽  
Mattea M. Scanlan ◽  
Alexander N. Chen ◽  
Hannah M. Ashberry ◽  
Sara E. Skrabalak
ACS Nano ◽  
2020 ◽  
Vol 14 (11) ◽  
pp. 15953-15961
Author(s):  
Joshua D. Smith ◽  
Mattea M. Scanlan ◽  
Alexander N. Chen ◽  
Hannah M. Ashberry ◽  
Sara E. Skrabalak

2018 ◽  
Vol 3 (4) ◽  
pp. 437-441 ◽  
Author(s):  
Joshua S. Santana ◽  
Kallum M. Koczkur ◽  
Sara E. Skrabalak

We show that different Au–Pd nanoparticles, ranging from sharp-branched octopods to core@shell octahedra, can be achieved by inline manipulation of reagent flowrates in a microreactor for seeded growth.


Langmuir ◽  
2013 ◽  
Vol 29 (33) ◽  
pp. 10559-10565 ◽  
Author(s):  
Xiaxia Liu ◽  
Yadong Yin ◽  
Chuanbo Gao

Author(s):  
Jun Liu ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Ultrafine particles usually have unique physical properties. This study illustrates how the lattice defects and interfacial structures between particles are related to the size of ultrafine crystalline gold particles.Colloidal gold particles were produced by reducing gold chloride with sodium citrate at 100°C. In this process, particle size can be controlled by changing the concentration of the reactant. TEM samples are prepared by transferring a small amount of solution onto a thin (5 nm) carbon film which is suspended on a copper grid. In this work, all experiments were performed with Philips 430T at 300 kV.With controlled seeded growth, particles of different sizes are produced, as shown in Figure 1. By a careful examination, it can be resolved that very small particles have lattice defects with complex interfaces. Some typical particle structures include multiple twins, resulting in a five-fold symmetry bicrystals, and highly disordered regions. Many particles are too complex to be described by simple models.


2018 ◽  
Author(s):  
Felix Hemmann ◽  
Jonathan Hackebeil ◽  
Andreas Lißner ◽  
Florian Mertens

Molecular sieves with beta zeolite topology are promising catalysts for various reactions as they exhibits extraordinary Lewis acidity. However, their industrial application and related research in academica is hindered because their synthesis is time consuming and typically involves toxic chemicals as hydrofluoric acid. Therefore, tetraethylammonium fluorid was tested as a non-toxic fluotide source for the synthesis of beta zeolites. In combination with the previously reported nano-seeded growth method, a fast synthesis of beta zeolites only involving non-toxic chemicals was possible. Synthesized zeolites show comparable selectivity in the Bayer-Villinger oxidation as conventional zeolites synthesized with hydrofluoric acid.<br>


Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


2017 ◽  
Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Terry Gani ◽  
Michael Orella ◽  
Eric Anderson ◽  
Michael Stone ◽  
Fikile Brushett ◽  
...  

Lignin is an abundant biopolymer important for plant function while holding promise as a renewable source of valuable chemicals. Although the lignification process in plant cell walls has been long-studied, a comprehensive, mechanistic understanding on the molecular scale remains elusive. A better understanding of lignification will lead to improved atomistic models of the plant cell wall that could, in turn, inform effective strategies for biomass valorization. Here, using first-principles quantum chemical calculations, we show that a simple model of kinetically-controlled radical coupling broadly rationalizes qualitative experimental observations of lignin structure across a wide variety of biomass types, thus paving the way for predictive, first-principles models of lignification while highlighting the ability of computational chemistry to help illuminate complex biological processes.


2009 ◽  
Vol 25 (1) ◽  
pp. 63-67
Author(s):  
Hao-Yang XIONG ◽  
Bin-Bin HU ◽  
Zhong-Hui XUE ◽  
Li CAI ◽  
Shu-Xi DAI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document