scholarly journals Anisotropic Nanoparticles Contributing to Shear-Thickening Behavior of Fumed Silica Suspensions

ACS Omega ◽  
2017 ◽  
Vol 2 (12) ◽  
pp. 8877-8887 ◽  
Author(s):  
Mahla Zabet ◽  
Kevin Trinh ◽  
Hossein Toghiani ◽  
Thomas E. Lacy ◽  
Charles U. Pittman ◽  
...  
2015 ◽  
Vol 7 (33) ◽  
pp. 18650-18661 ◽  
Author(s):  
Justin Warren ◽  
Sean Offenberger ◽  
Hossein Toghiani ◽  
Charles U. Pittman ◽  
Thomas E. Lacy ◽  
...  

2008 ◽  
Author(s):  
F. J. Galindo-Rosales ◽  
F. J. Rubio-Hernández ◽  
Albert Co ◽  
Gary L. Leal ◽  
Ralph H. Colby ◽  
...  

2019 ◽  
Vol 56 ◽  
pp. 63-70 ◽  
Author(s):  
Selim Gürgen

In this paper, a non-Newtonian fluid was fabricated dispersing nanosized silica particles in a polyethylene glycol medium. The rheology of the suspension was investigated in a stress-controlled rheometer under increasing shear rate. Based on the rheological measurements, the suspension exhibited shear thickening behavior which gives a drastic viscosity grow with the increase in the shear rate. In order to investigate the role of the micro-sized additive particles on the rheology of silica based suspension, silicon nitride particles were included in the suspension with three different concentrations. The results were discussed in terms of important parameters for the shear thickening mechanism such as critical shear rate, peak viscosity, thickening ratio and initial viscosity. According to the results, shear thickening behavior can be controlled altering the amount of silicon nitride particles in the suspension.


2015 ◽  
Vol 64 (6) ◽  
pp. 068301
Author(s):  
Shan Lei ◽  
Tian Yu ◽  
Meng Yong-Gang ◽  
Zhang Xiang-Jun

Soft Matter ◽  
2021 ◽  
Author(s):  
Vikram Rathee ◽  
Alessandro Monti ◽  
Marco Edoardo Rosti ◽  
Amy Q Shen

Shear thickening in stable dense colloidal suspensions is a reversible phenomenon and no hysteresis is observed in the flow curve measurements. However, a reduction in the stability of colloids promotes...


RSC Advances ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 8118-8130 ◽  
Author(s):  
Hongbin Yang ◽  
Wanli Kang ◽  
Hairong Wu ◽  
Yang Yu ◽  
Zhou Zhu ◽  
...  

The dispersed low-elastic microsphere system shows shear-thickening behavior because of the microstructure change and the interaction of internal forces.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jia Zhang ◽  
Shiqing Cheng ◽  
Jie Zhan ◽  
Qi Han

Viscoelastic polymer solution shows shear thinning behavior at low shear rates and shear thickening behavior at high shear rates in reservoirs. However, models that ignored shear thickening behavior were commonly employed to interpret transient pressure data derived from tested wells in viscoelastic polymer flooding systems; although, viscoelastic polymer solutions show shear thickening behavior in the near-wellbore region due to high shear rate. To better characterize the oilfield with pressure transient analysis in viscoelastic polymer flooding systems, we developed a numerical model that takes into account both shear thinning behavior and shear thickening behavior. A finite volume method was employed to discretize partially differential flow equations in a hybrid grid system including PEBI mesh and Cartesian grid, and the Newton-Raphson method was used to solve the fully implicit nonlinear system. To illustrate the significance of our model, we compared our model with a model that ignores the shear thickening behavior by graphing their solutions on log-log plots. In the flow regime of near-wellbore damage, the pressure derivative computed by our model is distinctly larger than that computed by the model ignoring shear thickening behavior. Furthermore, the effect of shear thickening behavior on pressure derivative differs from that of near-wellbore damage. We then investigated the influence of shear thickening behavior on pressure derivative with different polymer injection rates, injection rates, and permeabilities. The results can provide a benchmark to better estimate near-wellbore damage in viscoelastic polymer flooding systems. Besides, we demonstrated the applicability and accuracy of our model by interpreting transient pressure data from a field case in an oilfield with viscoelastic polymer flooding treatments.


Sign in / Sign up

Export Citation Format

Share Document