shear thinning
Recently Published Documents


TOTAL DOCUMENTS

1497
(FIVE YEARS 619)

H-INDEX

59
(FIVE YEARS 20)

2022 ◽  
Vol 421 ◽  
pp. 126909
Author(s):  
Uttam Kumar Kar ◽  
Sayantan Sengupta ◽  
Shantanu Pramanik ◽  
Soumik Chakraborty

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 36
Author(s):  
Tomáš Bodnár ◽  
Adélia Sequeira

This paper presents a numerical comparison of viscoelastic shear-thinning fluid flow using a generalized Oldroyd-B model and Johnson–Segalman model under various settings. Results for the standard shear-thinning generalization of Oldroyd-B model are used as a reference for comparison with those obtained for the same flow cases using Johnson–Segalman model that has specific adjustment of convected derivative to assure shear-thinning behavior. The modeling strategy is first briefly described, pointing out the main differences between the generalized Oldroyd-B model (using the Cross model for shear-thinning viscosity) and the Johnson–Segalman model operating in shear-thinning regime. Then, both models are used for blood flow simulation in an idealized stenosed axisymmetric vessel under different flow rates for various model parameters. The simulations are performed using an in-house numerical code based on finite-volume discretization. The obtained results are mutually compared and discussed in detail, focusing on the qualitative assessment of the most distinct flow field differences. It is shown that despite all models sharing the same asymptotic viscosities, the behavior of the Johnson–Segalman model can be (depending on flow regime) quite different from the predictions of the generalized Oldroyd-B model.


2022 ◽  
Vol 12 (2) ◽  
pp. 771
Author(s):  
Anusha Wei Asohan ◽  
Rokiah Hashim ◽  
Ku Marsilla Ku Ishak ◽  
Zuratul Ain Abdul Hamid ◽  
Nurshafiqah Jasme ◽  
...  

In this study, we aimed to prepare and characterise hydrogel formulations using cellulose nanocrystals (CNCs), alginate (Alg), and polyethylene glycol diacrylate (PEGDA). The CNC/Alg/PEGDA formulations were formed using a double network crosslinking approach. Firstly, CNC was extracted from oil palm trunk, and the size and morphology of the CNCs were characterised using TEM analysis. Secondly, different formulations were prepared using CNCs, Alg, and PEGDA. The mixtures were crosslinked with Ca2+ ions and manually extruded using a syringe before being subjected to UV irradiation at 365 nm. The shear-thinning properties of the formulations were tested prior to any crosslinking, while the determination of storage and loss modulus was conducted post extrusion after the Ca2+ ion crosslink using a rheometer. For the analysis of swelling behaviour, the constructs treated with UV were immersed in PBS solution (pH 7.4) for 48 h. The morphology of the UV crosslinked construct was analysed using SEM imaging. The extracted CNC exhibited rod-like structures with an average diameter and length of around 7 ± 2.4 and 113 ± 20.7 nm, respectively. Almost all CNC/Alg/PEGDA formulations (pre-gel formulation) displayed shear-thinning behaviour with the power-law index η < 1, and the behaviour was more prominent in the 1% [w/v] Alg formulations. The CNC/Alg/PEGDA with 2.5% and 4% [w/v] Alg displayed a storage modulus dominance over loss modulus (G′ > G″) which suggests good shape fidelity. After the hydrogel constructs were subjected to UV treatment at 365 nm, only the F8 construct [4% CNC: 4% Alg: 40% PEGDA] demonstrated tough and flexible characteristics that possibly mimic the native articular cartilage property due to a similar water content percentage (79.5%). In addition, the small swelling ratio of 4.877 might contribute to a minimal change of the 3D construct’s geometry. The hydrogel revealed a rough and wavy surface, and the pore size ranged from 3 to 20 µm. Overall, the presence of CNCs in the double network hydrogel demonstrated importance and showed positive effects towards the fabrication of a potentially ideal 3D bioprinted scaffold.


2022 ◽  
Vol 412 ◽  
pp. 126571
Author(s):  
Sai Manikiran Garimella ◽  
Mohan Anand ◽  
Kumbakonam R. Rajagopal

2022 ◽  
Vol 66 (1) ◽  
pp. 161-176
Author(s):  
Duncan Gilbert ◽  
Rudy Valette ◽  
Elisabeth Lemaire
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document