scholarly journals Measuring Valley Polarization in Two-Dimensional Materials with Second-Harmonic Spectroscopy

ACS Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 925-931 ◽  
Author(s):  
Yi Wei Ho ◽  
Henrique G. Rosa ◽  
Ivan Verzhbitskiy ◽  
Manuel J. L. F. Rodrigues ◽  
Takashi Taniguchi ◽  
...  
Nanophotonics ◽  
2018 ◽  
Vol 7 (5) ◽  
pp. 873-881 ◽  
Author(s):  
Rui Li ◽  
Yajun Zhang ◽  
Xuefeng Xu ◽  
Yi Zhou ◽  
Maodu Chen ◽  
...  

AbstractIn this paper, we employ the nonlinear optical microscopies of coherent anti-Stokes Raman scattering spectroscopy, two-photon excitation fluorescence, and second harmonic generation to characterize the properties of two-dimensional (2D) materials. With these nonlinear optical microscopy methods, we can not only clearly observe the surface topography of 2D materials but also reveal the quality of 2D materials. These nonlinear optical microscopies offer great potential for characterization of the properties of 2D materials.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
David N. Carvalho ◽  
Fabio Biancalana ◽  
Andrea Marini

AbstractThe usually-held notion that monolayer graphene, a centrosymmetric system, does not allow even-harmonic generation when illuminated at normal incidence is challenged by the discovery of a peculiar effect we term the dynamical centrosymmetry breaking mechanism. This effect results in a global pulse-induced oscillation of the Dirac cones which in turn produces second harmonic waves. We prove that this result can only be found by using the full Dirac equation and show that the widely used semiconductor Bloch equations fail to reproduce this and some other important physics of graphene. These results clear the way for further investigation concerning nonlinear light-matter interactions in a wide range of two-dimensional materials admitting either a gapped or ungapped Dirac-like spectrum.


Nanoscale ◽  
2020 ◽  
Vol 12 (45) ◽  
pp. 22891-22903
Author(s):  
He Ma ◽  
Jing Liang ◽  
Hao Hong ◽  
Kehai Liu ◽  
Dingxin Zou ◽  
...  

Second harmonic generation as a versatile tool for uncovering various properties of two-dimensional materials.


2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document