Selective Hydrogenolysis of Lignin Model Compounds to Aromatics over a Cobalt Nanoparticle Catalyst

2021 ◽  
Vol 9 (35) ◽  
pp. 11862-11871
Author(s):  
Wei Wu ◽  
Huizhen Liu ◽  
Haihong Wu ◽  
Bingxiao Zheng ◽  
Shitao Han ◽  
...  
2021 ◽  
Vol 23 (8) ◽  
pp. 3090-3103
Author(s):  
Changzhou Chen ◽  
Dichao Wu ◽  
Peng Liu ◽  
Jing Li ◽  
Haihong Xia ◽  
...  

Lignin is an abundant source of aromatics, and the depolymerization of lignin provides significant potential for producing high-value chemicals.


2017 ◽  
Vol 46 (35) ◽  
pp. 11884-11889 ◽  
Author(s):  
Kang-kang Sun ◽  
Guo-ping Lu ◽  
Jia-wei Zhang ◽  
Chun Cai

β-O-4 and α-O-4 linkages can be selectively cleaved by Pd–Ni bimetallic nanoparticles in ionic liquids using hydrogen gas as the hydrogen donor under ambient pressure and neutral conditions.


Author(s):  
Wei Jiang ◽  
Jing-Pei Cao ◽  
Jin-Xuan Xie ◽  
Liang Zhao ◽  
Chuang Zhang ◽  
...  

Lignin hydrogenolysis to produce chemicals and biofuels is a challenge due to the stable C-O ether bonds structure. The metal-organic frameworks (MOF) materials with excellent structural and chemical versatility have...


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahdieh Sharifi ◽  
Ramyakrishna Pothu ◽  
Rajender Boddula ◽  
Inamuddin

Background: There is a developing demand for innovation in petroleum systems replacements. Towards this aim, lignocellulosic biomass suggested as a possible sustainable source for the manufacturing of fuels and produced chemicals. The aims of this paper are to investigate different kinds of β-O-4 lignin model compounds for the production of value-added chemicals in presence of ionic liquids. Especially, a cheap β-O-4 lignin model Guaiacol glycerol ether (GGE) (Guaifenesin) is introduced to produce valuable chemicals and novel products. Methods: Research related to chemical depolymerization of lignocellulosic biomass activity is reviewed, the notes from different methods such as thermal and microwave collected during at least 10 years. So, this collection provides a good source for academic research and it gives an efficient strategy for the manufacturing of novel value-added chemicals at an industrial scale. Results: This research presented that ionic liquid microwave-assisted is a power saving, cost efficient, fast reaction, and clean way with high selectively and purity for production of high value chemicals rather that conversional heating. Guaiacol and catechol are some of these valuable chemicals that is produced from β-O-4 lignin model compounds with high word demands that are capable to produce in industry scale. Conclusion: The β-O-4 lignin model compounds such as Guaiacol glycerol ether (GGE) (Guaifenesin) are good platform for developing food materials, perfumery, biorefinery, and pharmaceutical industry by ionic liquids-assisted lignin depolymerization method.


2021 ◽  
Author(s):  
Guangyong Liu ◽  
Qian Wang ◽  
Dongxia Yan ◽  
Yaqin Zhang ◽  
Chenlu Wang ◽  
...  

Cleavage of aryl ether (Caryl-O) bonds is crucial for conversion and value-added utilization of lignin and its derivatives, but remains extremely challenging under mild conditions due to strong Caryl-O linkages....


1995 ◽  
Vol 21 (3-5) ◽  
pp. 353-371 ◽  
Author(s):  
N. A. Weir ◽  
J. Arct ◽  
A. Ceccarelli

Sign in / Sign up

Export Citation Format

Share Document