Hydropathic Analysis and Mutagenesis of the Catalytic Domain of the cGMP-Binding cGMP-Specific Phosphodiesterase (PDE5). cGMP versus cAMP Substrate Selectivity†

Biochemistry ◽  
1998 ◽  
Vol 37 (12) ◽  
pp. 4200-4205 ◽  
Author(s):  
Illarion V. Turko ◽  
Sharron H. Francis ◽  
Jackie D. Corbin
2019 ◽  
Vol 116 (41) ◽  
pp. 20404-20410 ◽  
Author(s):  
Amy J. Fernandez ◽  
Earnest James Paul Daniel ◽  
Sai Pooja Mahajan ◽  
Jeffrey J. Gray ◽  
Thomas A. Gerken ◽  
...  

Polypeptide N-acetylgalactosaminyl transferases (GalNAc-Ts) initiate mucin type O-glycosylation by catalyzing the transfer of N-acetylgalactosamine (GalNAc) to Ser or Thr on a protein substrate. Inactive and partially active variants of the isoenzyme GalNAc-T12 are present in subsets of patients with colorectal cancer, and several of these variants alter nonconserved residues with unknown functions. While previous biochemical studies have demonstrated that GalNAc-T12 selects for peptide and glycopeptide substrates through unique interactions with its catalytic and lectin domains, the molecular basis for this distinct substrate selectivity remains elusive. Here we examine the molecular basis of the activity and substrate selectivity of GalNAc-T12. The X-ray crystal structure of GalNAc-T12 in complex with a di-glycosylated peptide substrate reveals how a nonconserved GalNAc binding pocket in the GalNAc-T12 catalytic domain dictates its unique substrate selectivity. In addition, the structure provides insight into how colorectal cancer mutations disrupt the activity of GalNAc-T12 and illustrates how the rules dictating GalNAc-T12 function are distinct from those for other GalNAc-Ts.


2016 ◽  
Vol 180 (6) ◽  
pp. 1056-1075 ◽  
Author(s):  
Edgar Omar Mendoza-Llerenas ◽  
David Javier Pérez ◽  
Zeferino Gómez-Sandoval ◽  
Pilar Escalante-Minakata ◽  
Vrani Ibarra-Junquera ◽  
...  

2017 ◽  
Vol 8 (2) ◽  
pp. 1116-1126 ◽  
Author(s):  
Douglas M. Roberts ◽  
Christoph Bartel ◽  
Alan Scott ◽  
David Ivison ◽  
Thomas J. Simpson ◽  
...  

The complete stereochemical course and substrate selectivity of the enoyl reductase domain from the fungal polyketide synthase squalestatin tetraketide synthase (SQTKS) have been determined.


ChemBioChem ◽  
2018 ◽  
Vol 19 (21) ◽  
pp. 2262-2267 ◽  
Author(s):  
Martine I. Abboud ◽  
Rasheduzzaman Chowdhury ◽  
Ivanhoe K. H. Leung ◽  
Kerstin Lippl ◽  
Christoph Loenarz ◽  
...  

2005 ◽  
Vol 388 (1) ◽  
pp. 255-261 ◽  
Author(s):  
Jeffrey A. SIGMAN ◽  
Tasneem H. PATWA ◽  
Ana V. TABLANTE ◽  
Calleen D. JOSEPH ◽  
Marc J. GLUCKSMAN ◽  
...  

Thimet oligopeptidase (TOP) is a soluble metalloendopeptidase belonging to a family of enzymes including neurolysin and neprilysin that utilize the HEXXH metal-binding motif. TOP is widely distributed among cell types and is able to cleave a number of structurally unrelated peptides. A recent focus of interest has been on structure–function relationships in substrate selectivity by TOP. The enzyme's structural fold comprises two domains that are linked at the bottom of a deep substrate-binding cleft via several flexible loop structures. In the present study, fluorescence spectroscopy has been used to probe structural changes in TOP induced by the chemical denaturant urea. Fluorescence emission, anisotropy and collisional quenching data support a two-step unfolding process for the enzyme in which complete loss of the tertiary structure occurs in the second step. Complete loss of activity and loss of catalytic Zn(II) from the active site, monitored by absorption changes of the metal chelator 4-(2-pyridylazo)-resorcinol, are also connected with the second step. In contrast, the first unfolding event, which is linked to changes in the non-catalytic domain, leads to a sharp increase in kcat towards a 9-residue substrate and a sharp decrease in kcat for a 5-residue substrate. Thus a conformational change in TOP has been directly correlated with a change in substrate selectivity. These results provide insight into how the enzyme can process the range of structurally unrelated peptides necessary for its many physiological roles.


2009 ◽  
Vol 138 (3) ◽  
pp. 604-604
Author(s):  
Natalia Jura ◽  
Nicholas F. Endres ◽  
Kate Engel ◽  
Sebastian Deindl ◽  
Rahul Das ◽  
...  

2009 ◽  
Vol 138 (33) ◽  
pp. 604-604
Author(s):  
Natalia Jura ◽  
Nicholas F. Endres ◽  
Kate Engel ◽  
Sebastian Deindl ◽  
Rahul Das ◽  
...  

1996 ◽  
Vol 75 (02) ◽  
pp. 313-317 ◽  
Author(s):  
D J Kim ◽  
A Girolami ◽  
H L James

SummaryNaturally occurring plasma factor XFriuli (pFXFr) is marginally activated by both the extrinsic and intrinsic coagulation pathways and has impaired catalytic potential. These studies were initiated to obtain confirmation that this molecule is multi-functionally defective due to the substitution of Ser for Pro at position 343 in the catalytic domain. By the Nelson-Long site-directed mutagenesis procedure a construct of cDNA in pRc/CMV was derived for recombinant factor XFriuli (rFXFr) produced in human embryonic (293) kidney cells. The rFXFr was purified and shown to have a molecular size identical to that of normal plasma factor X (pFX) by gel electrophoretic, and amino-terminal sequencing revealed normal processing cleavages. Using recombinant normal plasma factor X (rFXN) as a reference, the post-translational y-carboxy-glutamic acid (Gla) and (β-hydroxy aspartic acid (β-OH-Asp) content of rFXFr was over 85% and close to 100%, respectively, of expected levels. The specific activities of rFXFr in activation and catalytic assays were the same as those of pFXFr. Molecular modeling suggested the involvement of a new H-bond between the side-chains of Ser-343 and Thr-318 as they occur in anti-parallel (3-pleated sheets near the substrate-binding pocket of pFXFr. These results support the conclusion that the observed mutation in pFXFr is responsible for its dysfunctional activation and catalytic potentials, and that it accounts for the moderate bleeding tendency in the homozygous individuals who possess this variant procoagulant.


Sign in / Sign up

Export Citation Format

Share Document