brain mrna
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 8)

H-INDEX

28
(FIVE YEARS 2)

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Mari Takalo ◽  
Rebekka Wittrahm ◽  
Benedikt Wefers ◽  
Samira Parhizkar ◽  
Kimmo Jokivarsi ◽  
...  

Abstract Background Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer’s disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. Methods To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. Results Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. Conclusion The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.


Cell Reports ◽  
2020 ◽  
Vol 32 (11) ◽  
pp. 108137
Author(s):  
Yingying Xie ◽  
Xue Zhang ◽  
Feng Liu ◽  
Wen Qin ◽  
Jilian Fu ◽  
...  

Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582094691
Author(s):  
Zhang Tao ◽  
Hu Chun-Yan ◽  
Peng Hua ◽  
Yang Bin-Bin ◽  
Tang Xiaoping

Background: Epilepsy is a chronic, complex, unprovoked, and recurrent disorder of the nervous system that affected several people worldwide. Phyllanthus amarus (PA) has been documented to have neuroprotective potential. Aim: To evaluate the potential of standardized extract of PA and its possible mechanism of action against the Pentylenetetrazol (PTZ)-induced convulsion and kindling associated post-ictal depression in experimental mice. Materials and Methods: Phyllathin was isolated from methanolic extract of PA and well-characterized using HPTLC, ESI-MS/MS, and LC/MS. Phyllathin containing a standardized extract of PA (50, 100, and 200 mg/kg) was administered in convulsed and kindled mice, followed by an assessment of various parameters. Results: The spectral analysis confirmed the molecular formula and weight of phyllanthin as C24H34O6 and 418.2342 Da. PA (100 and 200 mg/kg) significantly ameliorated PTZ-induced ( p < 0.05) duration, onset of tonic-clonic convulsion, and mortality in mice. It also significantly attenuated ( p < 0.05) PTZ-induced kindling in mice. Alteration in brain GABA, dopamine, and glutamate, Na+K+ATPase, Ca+2-ATPase activities, and oxido-nitrosative stress in kindled mice was significantly restored ( p < 0.05) by PA treatment. It also significantly ( p < 0.05) down-regulated brain mRNA expressions of NF-κB, TNF-α, IL-1β, COX-2, and TLR-4. Histological aberrations induced by PTZ in the brain of a kindled rat was significantly ( p < 0.05) ameliorated by PA. Conclusion: Phyllanthin containing a standardized extract of PA exerts its antiepileptic potential via balancing excitatory (glutamate) and inhibitory (GABA) brain monoamines, voltage-gated ion channels (Na+K+/Ca+2-ATPase) and inhibition of NF-κB/TLR-4 pathway to ameliorate neuroinflammation (TNF-α, IL-1β, and COX-2) in experimental mice.


2020 ◽  
Author(s):  
Mari Takalo ◽  
Rebekka Wittrahm ◽  
Benedikt Wefers ◽  
Samira Parhizkar ◽  
Kimmo Jokivarsi ◽  
...  

AbstractBackgroundMicroglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer’s disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) selectively expressed in microglia and macrophages was recently identified and shown to reduce the risk for AD.MethodsTo assess the role of this variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing.ResultsFunctional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival, enhanced phagocytic activity, and increased acute inflammatory response of the KI cells. Enhanced phagocytosis was also observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Furthermore, the brain mRNA signature together with microglia-specific PET imaging indicated microglia activation in Plcγ2-P522R KI mice.ConclusionThus, we have delineated cellular mechanisms of the protective Plcγ2-P522R variant, which provide further support for the emerging idea that activated microglia exert protective functions in AD.


2020 ◽  
Vol 30 (6) ◽  
pp. 3771-3780 ◽  
Author(s):  
Jakob Unterholzner ◽  
Gregor Gryglewski ◽  
Cecile Philippe ◽  
Rene Seiger ◽  
Verena Pichler ◽  
...  

Abstract The serotonin-1A receptor (5-HT1AR) represents a viable target in the treatment of disorders of the brain. However, development of psychiatric drugs continues to be hindered by the relative inaccessibility of brain tissue. Although the efficacy of drugs selective for the 5-HT1AR has not been proven, research continues to focus on drugs that influence this receptor subtype. To further knowledge on this topic, we investigated the topological coexpression patterns of the 5-HT1AR. We calculated Spearman’s rho for the correlation of positron emission tomography-binding potentials (BPND) of the 5-HT1AR assessed in 30 healthy subjects using the tracer [carbonyl-11C]WAY-100635 and predicted whole-brain mRNA expression of 18 686 genes. After applying a threshold of r &gt; 0.3 in a leave-one-out cross-validation of the prediction of mRNA expression, genes with ρ ≥ 0.7 were considered to be relevant. In cortical regions, 199 genes showed high correlation with the BPND of the 5-HT1AR, in subcortical regions 194 genes. Using our approach, we could consolidate the role of BDNF and implicate new genes (AnxA8, NeuroD2) in serotonergic functioning. Despite its explorative nature, the analysis can be seen as a gene prioritization approach to reduce the number of genes potentially connected to 5-HT1AR functioning and guide future in vitro studies.


2020 ◽  
Vol 213 ◽  
pp. 112724 ◽  
Author(s):  
Elvira Fatsini ◽  
Sonia Rey ◽  
Zohar Ibarra-Zatarain ◽  
Sebastián Boltaña ◽  
Simon Mackenzie ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197094 ◽  
Author(s):  
Frédéric Canini ◽  
Bolin Qin ◽  
Nathalie Arvy ◽  
Laurent Poulet ◽  
Cécile Batandier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document