scholarly journals Coke Formation on Metal Surfaces, Copyright, ACS Symposium Series, FOREWORD

Carbon ◽  
1984 ◽  
Vol 22 (2) ◽  
pp. 247
Author(s):  
P.A. Thrower

Author(s):  
Clifford S. Rainey

The spatial distribution of V and Ni deposited within fluidized catalytic cracking (FCC) catalyst is studied because these metals contribute to catalyst deactivation. Y zeolite in FCC microspheres are high SiO2 aluminosilicates with molecular-sized channels that contain a mixture of lanthanoids. They must withstand high regeneration temperatures and retain acid sites needed for cracking of hydrocarbons, a process essential for efficient gasoline production. Zeolite in combination with V to form vanadates, or less diffusion in the channels due to coke formation, may deactivate catalyst. Other factors such as metal "skins", microsphere sintering, and attrition may also be involved. SEM of FCC fracture surfaces, AEM of Y zeolite, and electron microscopy of this work are developed to better understand and minimize catalyst deactivation.


Author(s):  
R. L. Freed ◽  
M. J. Kelley

The commercial introduction of Pt-Re supported catalysts to replace Pt alone on Al2O3 has brought improvements to naphtha reforming. The bimetallic catalyst can be operated continuously under conditions which lead to deactivation of the single metal catalyst by coke formation. Much disagreement still exists as to the exact nature of the bimetallic catalyst at a microscopic level and how it functions in the process so successfully. The overall purpose of this study was to develop the materials characterization tools necessary to study supported catalysts. Specifically with the Pt-Re:Al2O3 catalyst, we sought to elucidate the elemental distribution on the catalyst.


1876 ◽  
Vol 1 (5supp) ◽  
pp. 78-78
Author(s):  
Joshua Rose
Keyword(s):  

1999 ◽  
Vol 96 (2) ◽  
pp. 303-318 ◽  
Author(s):  
G. A. Doka Nassionou ◽  
P. Magnoux ◽  
M. Guisnet

Sign in / Sign up

Export Citation Format

Share Document