An analytical microscopic study of metals in fluidized catalytic cracking catalyst

Author(s):  
Clifford S. Rainey

The spatial distribution of V and Ni deposited within fluidized catalytic cracking (FCC) catalyst is studied because these metals contribute to catalyst deactivation. Y zeolite in FCC microspheres are high SiO2 aluminosilicates with molecular-sized channels that contain a mixture of lanthanoids. They must withstand high regeneration temperatures and retain acid sites needed for cracking of hydrocarbons, a process essential for efficient gasoline production. Zeolite in combination with V to form vanadates, or less diffusion in the channels due to coke formation, may deactivate catalyst. Other factors such as metal "skins", microsphere sintering, and attrition may also be involved. SEM of FCC fracture surfaces, AEM of Y zeolite, and electron microscopy of this work are developed to better understand and minimize catalyst deactivation.

Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 542
Author(s):  
Abdualkaber Alkhlel ◽  
Hugo de Lasa

The present study is a follow-up to a recent authors contribution which describes the effect of the C/O (catalyst/oil) ratio on catalytic cracking activity and catalyst deactivation. This study, while valuable, was limited to one fluidized catalytic cracking (FCC) catalyst. The aim of the present study is to consider the C/O effect using three FCC catalysts with different activities and acidities. Catalysts were characterized in terms of crystallinity, total acidity, specific surface Area (SSA), temperature programmed ammonia desorption (NH3-TPD), and pyridine chemisorption. 1,3,5-TIPB (1,3,5-tri-isopropyl benzene) catalytic cracking runs were carried out in a bench-scale mini-fluidized batch unit CREC (chemical reactor engineering centre) riser simulator. All data were taken at 550 °C with a contact time of 7 s. Every experiment involved 0.2 g of 1,3,5-TIPB with the amount of catalyst changing in the 0.12–1 g range. The resulting 0.6–5 g oil/g cat ratios showed a consistent 1,3,5-TIPB conversion increasing first, then stabilizing, and finally decreasing modestly. On the other hand, coke formation and undesirable benzene selectivity always rose. Thus, the reported results show that catalyst density affects both catalyst coking and deactivation, displaying an optimum C/O ratio, achieving maximum hydrocarbon conversions in FCC units.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 53
Author(s):  
Kai Miao ◽  
Tan Li ◽  
Jing Su ◽  
Cong Wang ◽  
Kaige Wang

Catalytic hydropyrolysis via the introduction of external hydrogen into catalytic pyrolysis process using hydrodeoxygenation catalysts is one of the major approaches of bio-oil upgrading. In this study, hydrodeoxygenation of acetone over Mo/HZSM-5 and HZSM-5 were investigated with focus on the influence of hydrogen pressure and catalyst deactivation. It is found that doped MoO3 could prolong the catalyst activity due to the suppression of coke formation. The influence of hydrogen pressure on catalytic HDO of acetone was further studied. Hydrogen pressure of 30 bar effectively prolonged catalyst activity while decreased the coke deposition over catalyst. The coke formation over the HZSM-5 and Mo/HZSM-5 under 30 bar hydrogen pressure decreased 66% and 83%, respectively, compared to that under atmospheric hydrogen pressure. Compared to the test with the HZSM-5, 35% higher yield of aliphatics and 60% lower coke were obtained from the Mo/HZSM-5 under 30 bar hydrogen pressure. Characterization of the spent Mo/HZSM-5 catalyst revealed the deactivation was mainly due to the carbon deposition blocking the micropores and Bronsted acid sites. Mo/HZSM-5 was proved to be potentially enhanced production of hydrocarbons.


1998 ◽  
Vol 16 (8) ◽  
pp. 595-606 ◽  
Author(s):  
Tang Yubin ◽  
Chen Fangyan ◽  
Zhang Honglin

Batch adsorption experiments of Pb2+ Cu2+ and Zn2+ ions on to waste fluidized catalytic cracking (FCC) catalyst were performed. The results obtained indicate that adsorption time, temperature and pH were the main factors influencing the adsorptive capacities. The adsorption data for each ion were well described by the Freundlich and Langmuir adsorption models. The mechanisms for the adsorption of Pb2+, Cu2+ and Zn2+ ions on to waste FCC catalyst involved ion-exchange adsorption of the three kinds of heavy metallic ions studied or the formation of hydroxo complexes. Under the experimental conditions employed, the removal of Pb2+, Cu2+ and Zn2+ ions attained values of 97.0%, 90.5% and 91.5%. respectively. In addition, dynamic adsorption of the respective ions on to a column of FCC catalyst was investigated together with studies of the regeneration of the adsorbent. The results of such column tests showed that Pb2+ ions can be effectively removed from aqueous solutions by waste FCC catalyst in a packed bed. The adsorbent was easily regenerated by the use of a flow of hydrochloric acid through the packed bed under the experimental conditions employed.


Author(s):  
Iker Torre ◽  
Jose M. Arandes ◽  
Pedro Castano ◽  
Miren Azkoiti ◽  
Javier Bilbao ◽  
...  

Catalytic cracking of waste plastics is an interesting option for selectively recovering raw materials or for obtaining fuels. In this paper, a new recycling strategy is proposed, which consists of upgrading the waxes obtained by flash pyrolysis of polyolefins in a FCC (Fluidized Catalytic Cracking) unit. The waxes have been obtained by flash pyrolysis of polypropylene at 500 ºC and they have been dissolved (20 wt% wax) in the vacuum gasoil (VGO) of a FCC unit. The runs have been carried out in a CREC-UWO Riser Simulator Reactor (atmospheric pressure; 500-550 ºC; C/O = 5.5; contact times, 3-12 s). A commercial catalyst and a hybrid one (containing HZSM-5 zeolite) have been used. The cracking of the mixture leads to higher yield of gasoline than in the cracking of VGO with a higher content of olefins. The results of the effect of the operating conditions (temperature and contact time) are qualitatively similar to those corresponding to standard feed. Consequently, no difficulties inherent to the presence of waxes in the feed are expected in the treatment of mixtures at industrial conditions. The presence of HZSM-5 zeolite in the catalyst causes a significant increase in the amount of LPG (especially C3-C4 olefins), at the expense of a decrease in the gasoline fraction, whose RON is 1-2 points higher than that corresponding to the commercial catalyst. The gasoline obtained also has a higher content of olefins (especially C5-C7) and benzene at the expense of a decrease in the amount of C6-C10 i-paraffins.


2018 ◽  
Vol 96 (12) ◽  
pp. 2593-2601
Author(s):  
Thamayne Valadares de Oliveira ◽  
Renata Bachmann Guimarães Valt ◽  
Haroldo de Araújo Ponte ◽  
Maria José Jerônimo de Santana Ponte ◽  
Carlos Itsuo Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document