Efficient Cellulase Production by the Filamentous Fungus Acremonium cellulolyticus

2007 ◽  
Vol 23 (2) ◽  
pp. 333-338 ◽  
Author(s):  
Y. Ikeda ◽  
H. Hayashi ◽  
N. Okuda ◽  
E.Y. Park
2008 ◽  
Vol 106 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Xu Fang ◽  
Shinichi Yano ◽  
Hiroyuki Inoue ◽  
Shigeki Sawayama

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yumeng Chen ◽  
Xingjia Fan ◽  
Xinqing Zhao ◽  
Yaling Shen ◽  
Xiangyang Xu ◽  
...  

Abstract Background The filamentous fungus Trichoderma reesei is one of the best producers of cellulase and has been widely studied for the production of cellulosic ethanol and bio-based products. We previously reported that Mn2+ and N,N-dimethylformamide (DMF) can stimulate cellulase overexpression via Ca2+ bursts and calcium signalling in T. reesei under cellulase-inducing conditions. To further understand the regulatory networks involved in cellulase overexpression in T. reesei, we characterised the Mn2+/DMF-induced calcium signalling pathway involved in the stimulation of cellulase overexpression. Results We found that Mn2+/DMF stimulation significantly increased the intracellular levels of cAMP in an adenylate cyclase (ACY1)-dependent manner. Deletion of acy1 confirmed that cAMP is crucial for the Mn2+/DMF-stimulated cellulase overexpression in T. reesei. We further revealed that cAMP elevation induces a cytosolic Ca2+ burst, thereby initiating the Ca2+ signal transduction pathway in T. reesei, and that cAMP signalling causes the Ca2+ signalling pathway to regulate cellulase production in T. reesei. Furthermore, using a phospholipase C encoding gene plc-e deletion strain, we showed that the plc-e gene is vital for cellulase overexpression in response to stimulation by both Mn2+ and DMF, and that cAMP induces a Ca2+ burst through PLC-E. Conclusions The findings of this study reveal the presence of a signal transduction pathway in which Mn2+/DMF stimulation produces cAMP. Increase in the levels of cAMP activates the calcium signalling pathway via phospholipase C to regulate cellulase overexpression under cellulase-inducing conditions. These findings provide insights into the molecular mechanism of the cAMP–PLC–calcium signalling pathway underlying cellulase expression in T. reesei and highlight the potential applications of signal transduction in the regulation of gene expression in fungi.


Microscopy ◽  
2016 ◽  
Vol 65 (suppl 1) ◽  
pp. i28.1-i28
Author(s):  
Yosuke Shida ◽  
Shingo Tahara ◽  
Minaho Fujiwara ◽  
Nguyen Le Quynh Anh ◽  
Nobuhito Nango ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yumeng Chen ◽  
Chuan Wu ◽  
Yaling Shen ◽  
Yushu Ma ◽  
Dongzhi Wei ◽  
...  

2009 ◽  
Vol 107 (3) ◽  
pp. 256-261 ◽  
Author(s):  
Xu Fang ◽  
Shinichi Yano ◽  
Hiroyuki Inoue ◽  
Shigeki Sawayama

2018 ◽  
Vol 63 (2) ◽  
pp. 115-129
Author(s):  
Rahela Carpa ◽  
◽  
Alin Cândea ◽  
Alexei Remizovschi ◽  
Lucian Barbu-Tudoran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document