trichoderma reesei
Recently Published Documents


TOTAL DOCUMENTS

1707
(FIVE YEARS 305)

H-INDEX

93
(FIVE YEARS 8)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 481
Author(s):  
Orlin Gemishev ◽  
Marinela Panayotova ◽  
Gospodinka Gicheva ◽  
Neli Mintcheva

In the current study, a green method for the preparation of silver nanoparticles (AgNPs) is presented as an alternative to conventional chemical and physical approaches. A biomass of Trichoderma reesei (T. reesei) fungus was used as a green and renewable source of reductase enzymes and metabolites, which are capable of transforming Ag+ ions into AgNPs with a small size (mainly 2–6 nm) and narrow size distribution (2–25 nm). Moreover, extracellular biosynthesis was carried out with a cell-free water extract (CFE) of T. reesei, which allows for facile monitoring of the bioreduction process using UV–Vis spectroscopy and investigation of the effect of experimental conditions on the transformation of Ag+ ions into AgNPs, as well as the simple isolation of as-prepared AgNPs for the study of their size, morphology and antibacterial properties. In continuation to our previous results about the influence of media on T. reesei cultivation, the amount of biomass used for CFE preparation and the concentration of Ag+ ion solution, herein, we present the impact of temperature (4, 20, 30 and 40 °C), agitation and time duration on the biosynthesis of AgNPs and their properties. A high stability of AgNPs in aqueous colloids was observed and attributed to the capping effect of the biomolecules as shown by the zeta potential (−49.0/−51.4 mV) and confirmed by the hydrodynamic size of 190.8/116.8 nm of AgNPs.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yifan Wang ◽  
Ruiyan Liu ◽  
Hong Liu ◽  
Xihai Li ◽  
Linjing Shen ◽  
...  

Abstract Background The filamentous fungus Trichoderma reesei is a widely used workhorse for cellulase production in industry due to its prominent secretion capacity of extracellular cellulolytic enzymes. However, some key components are not always sufficient in this cellulase cocktail, making the conversion of cellulose-based biomass costly on the industrial scale. Development of strong and efficient promoters would enable cellulase cocktail to be optimized for bioconversion of biomass. Results In this study, a synthetic hybrid promoter was constructed and applied to optimize the cellulolytic system of T. reesei for efficient saccharification towards corncob residues. Firstly, a series of 5’ truncated promoters in different lengths were established based on the strong constitutive promoter Pcdna1. The strongest promoter amongst them was Pcdna1-3 (− 640 to − 1 bp upstream of the translation initiation codon ATG), exhibiting a 1.4-fold higher activity than that of the native cdna1 promoter. Meanwhile, the activation region (− 821 to − 622 bp upstream of the translation initiation codon ATG and devoid of the Cre1-binding sites) of the strong inducible promoter Pcbh1 was cloned and identified to be an amplifier in initiating gene expression. Finally, this activation region was fused to the strongest promoter Pcdna1-3, generating the novel synthetic hybrid promoter Pcc. This engineered promoter Pcc drove strong gene expression by displaying 1.6- and 1.8-fold stronger fluorescence intensity than Pcbh1 and Pcdna1 under the inducible condition using egfp as the reporter gene, respectively. Furthermore, Pcc was applied to overexpress the Aspergillus niger β-glucosidase BGLA coding gene bglA and the native endoglucanase EG2 coding gene eg2, achieving 43.5-fold BGL activity and 1.2-fold EG activity increase, respectively. Ultimately, to overcome the defects of the native cellulase system in T. reesei, the bglA and eg2 were co-overexpressed under the control of Pcc promoter. The bglA-eg2 double expression strain QPEB70 exhibited a 178% increase in total cellulase activity, whose cellulase system displayed 2.3- and 2.4-fold higher saccharification efficiency towards acid-pretreated and delignified corncob residues than the parental strain, respectively. Conclusions The synthetic hybrid promoter Pcc was generated and employed to improve the cellulase system of T. reesei by expressing specific components. Therefore, construction of synthetic hybrid promoters would allow particular cellulase genes to be expressed at desired levels, which is a viable strategy to optimize the cellulolytic enzyme system for efficient biomass bioconversion.


LWT ◽  
2022 ◽  
pp. 113060
Author(s):  
Cristina Alamprese ◽  
Manuela Rollini ◽  
Alida Musatti ◽  
Pasquale Ferranti ◽  
Alberto Barbiroli

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Dae-Seok Lee ◽  
Younho Song ◽  
Yoon-Gyo Lee ◽  
Hyeun-Jong Bae

Cellulase adsorption onto lignin decreases the productivity of enzymatic hydrolysis of lignocellulosic biomass. Here, adsorption of enzymes onto different types of lignin was investigated, and the five major enzymes—cellobiohydrolases (CBHs), endoglucanase (Cel7B), β-glucosidase (Cel3A), xylanase (XYNIV), and mannanase (Man5A)—in a cellulase cocktail obtained from Trichoderma reesei were individually analyzed through SDS-PAGE and zymogram assay. Lignin was isolated from woody (oak and pine lignin) and herbaceous (rice straw and kenaf lignin) plants. The relative adsorption of CBHs compared to the control was in the range of 14.15–18.61%. The carbohydrate binding motif (CBM) of the CBHs contributed to higher adsorption levels in oak and kenaf lignin, compared to those in pine and rice lignin. The adsorption of endoglucanase (Cel7B) by herbaceous plant lignin was two times higher than that of woody lignin, whereas XYNIV showed the opposite pattern. β-glucosidase (Cel3A) displayed the highest and lowest adsorption ratios on rice straw and kenaf lignin, respectively. Mannanase (Man5A) was found to have the lowest adsorption ratio on pine lignin. Our results showed that the hydrophobic properties of CBM and the enzyme structures are key factors in adsorption onto lignin, whereas the properties of specific lignin types indirectly affect adsorption.


2021 ◽  
Author(s):  
Toshiharu Arai ◽  
Sakurako Ichinose ◽  
Nozomu Shibata ◽  
Hiroshi Kakeshita ◽  
Hiroshi Kodama ◽  
...  

Abstract Background: Trichoderma reesei (Hypocrea jecorina) is a filamentous fungus that can produce extremely high levels of protein; consequently, it is utilized as a host for the production of cellulase and hemicellulase cocktails for lignocellulosic biomass degradation. Several hyper-producer strains of T. reesei have been bred for use in industrial production, but they generally require inducers to achieve high production capacities. The most commonly used inducers are soluble sugars produced by the degradation of cellulose; however, the dependence on cellulose degradation is problematic because cellulose is insoluble and has poor handling properties as a carbon source. Furthermore, once cellulose is decomposed, little cellulase is produced, making it difficult to produce the enzyme continuously and efficiently. The aim of this study was to establish a simple, inducer-free, cellulase production system using glucose as the sole carbon source.Results: Here, we focused on transcription factors that regulate both cellulase and hemicellulase genes. First, we verified that the previously reported Xylanase regulator 1 (Xyr1) mutation had a glucose-blind phenotype in T. reesei, and confirmed that constitutive expression of the V821F mutation in Xyr1 produced high levels of proteins, especially hemicellulase and cellulase, even in inducer-free conditions. However, the majority of proteins were hemicellulases. To reproduce cellulase/hemicellulase production similar to those observed under induced conditions, an activator of cellulase expression 3 (Ace3) was expressed in Xyr1V821F expressed strain additionally. As a result, the T. reesei strain constitutively expressing Xyr1V821F and Ace3 exhibited a 1.5-fold increase than Xyr1V821F expressed only in protein productivity under inducer-free conditions. Notably, the enzyme composition significantly improved for cellulases ratio and similar to that induced by cellulose. Furthermore, the enzymes exhibited a high saccharification efficiency when compared to that of produced by the strain expressing only the mutated Xyr1.Conclusions: This work shows that the constitutive expression of mutated Xyr1 and Ace3 can increase cellulase and hemicellulase production in T. reesei without inducers. This inducer-free enzyme production method could provide an effective system to reduce costs and simplify production processes, and is expected to be applied in the production of various proteins.


Author(s):  
Shunxing Chai ◽  
Zhihua Zhu ◽  
Ernuo Tian ◽  
Meili Xiao ◽  
Yan Wang ◽  
...  

Author(s):  
Natasha Järviö ◽  
Tuure Parviainen ◽  
Netta-Leena Maljanen ◽  
Yumi Kobayashi ◽  
Lauri Kujanpää ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document