Performance and Emission Characteristics of a Spark-Ignition (SI) Hydrogen-Enriched Compressed Natural Gas (HCNG) Engine Under Various Operating Conditions Including Idle Conditions

2009 ◽  
Vol 23 (6) ◽  
pp. 3113-3118 ◽  
Author(s):  
Fanhua Ma ◽  
Shangfen Ding ◽  
Yefu Wang ◽  
Mingyue Wang ◽  
Long Jiang ◽  
...  
2018 ◽  
Vol 15 (6) ◽  
pp. 710-718
Author(s):  
Syed Azam Pasha Quadri ◽  
Girish Srivatsa Rentala ◽  
Raghavendra Sarap

Purpose Over past decades, the fossil fuel reserves in the world have been decreasing at an alarming rate and a lack of crude oil is expected in the early decades of this century. Also, the eco-neutral pollutants such as carbon monoxide (CO), oxides of nitrigen (NOx) and unburnt hydrocarbons (UHC) are also increasing. This calls for innovative research in non-conventional fuels to replace fossil fuels. Hydrogen is one such fuel which has an exceptional combustion property and appears to be proving itself as the best transportation fuel of the future. On the other hand, compressed natural gas(CNG) has already been credited as a remarkable fuel for its better emission characteristics and has been implemented as a transportation fuel in metros. Therefore, the use of hydrogen blended with natural gas seems to be a viable alternative to pure fossil fuels because of the expected reduction of the total pollutants and increase of efficiency. This paper aims to investigate this issue. Design/methodology/approach In the present experimental investigation, 10 and 20 per cent of hydrogen–CNG mixture(HCNG) by mass of fuel is inducted into the combustion chamber in conjunction with air in HCNG–diesel dual fuel mode. The variation in injection opening pressure is assessed to optimize the performance and emission characteristics. Findings Experiments were conducted at three different injection opening pressures, i.e. 200, 220 and 240 bar, at full-load condition and the performance characteristics were calculated. The effect of injection operating pressure(IOP) on emissions were measured and compared with pure diesel mode. Originality/value Brake thermal efficiency (BTE) was increased by 1.2 per cent at 220 bar. Minimum BSFC of 0.2302 kg/kWh, 0.2114 kg/kWh was noticed for 220 bar with a changing ratio of 20 per cent of HCNG. It was noticed that CO and UHC decreased with variation in IOP and HCNG content in the blend. However, there was an increase in NOx emissions.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3861
Author(s):  
Bum Youl Park ◽  
Ki-Hyung Lee ◽  
Jungsoo Park

Hydrogen-based engines are progressively becoming more important with the increasing utilization of hydrogen and layouts (e.g., onboard reforming systems) in internal combustion engines. To investigate the possibility of HICE (hydrogen fueled internal combustion engine), such as an engine with an onboard reforming system, which is introduced as recent technologies, various operating areas and parameters should be considered to obtain feasible hydrogen contents itself. In this study, a virtual hydrogen-added compressed natural gas (HCNG) model is built from a modified 11-L CNG (Compressed Natural Gas) engine, and a response surface model is derived through a parametric study via the Latin hypercube sampling method. Based on the results, performance and emission trends relative to hydrogen in the HCNG engine system are suggested. The operating conditions are 1000, 1300, and 1500 rpm under full load. For the Latin hypercube sampling method, the dominant variables include spark timing, excess air ratio (i.e., λCH4+H2), and H2 addition. Under target operating conditions of 1000, 1300, and 1500 rpm, the addition of 6–10% hydrogen enables the virtual HCNG engine to reach similar levels of torque and BSFC (brake specific fuel consumption) compared to same lambda condition of λCH4. For the relatively low 1000 rpm speed under conditions similar to those of the base engine, NOx formation is greater than base engine condition, while a similar NOx level can be maintained under the middle speed range (1300 and 1500 rpm) despite hydrogen addition. Upon addition of 6–10% hydrogen under the middle speed operation range, the target engine achieves performance and emission similar to those of the base engine.


Sign in / Sign up

Export Citation Format

Share Document