EOS Simulation and GRNN Modeling of the Constant Volume Depletion Behavior of Gas Condensate Reservoirs

1998 ◽  
Vol 12 (2) ◽  
pp. 353-364 ◽  
Author(s):  
Adel M. Elsharkawy ◽  
Salah G. Foda
Fuel ◽  
2018 ◽  
Vol 231 ◽  
pp. 146-156 ◽  
Author(s):  
Adel Najafi-Marghmaleki ◽  
Afshin Tatar ◽  
Ali Barati-Harooni ◽  
Milad Arabloo ◽  
Shahin Rafiee-Taghanaki ◽  
...  

Author(s):  
Aniedi B. Usungedo ◽  
Julius U. Akpabio

Aims: The variations in production performances of the Black oil and compositional simulation models can be evaluated by simulating oil formation volume factor (Bo), gas formation volume factor (Bg), gas-oil ratio (Rs) and volatilized oil-gas ratio (Rv). The accuracy of these two models could be assessed. Methodology: To achieve this objective some basic parameters were keyed into matrix laboratory (MATLAB) using the symbolic mathematical toolbox to obtain accurate Pressure Volume Temperature (PVT) properties which were used in a production and systems analysis software to generate the production performance and hydrocarbon recovery estimation. Standard black oil PVT properties for a gas condensate reservoir was simulated by performing a series of flash calculations based on compositional modeling of the gas condensate fluid at the prescribed conditions through a constant volume depletion (CVD) path. These series of calculations will be carried out using the symbolic math toolbox. PVT property values obtained from both compositional modeling and black oil PVT prediction algorithm are incorporated to determine the production performance of each method for comparison. Results: The absolute open flow for the black oil PVT algorithm and the compositional model for the Rs value of 500 SCF/STB and Rs value of 720SCF/STB were 130,461 stb/d and 146,028 stb/d respectively showing a 10.66% incremental flow rate. Conclusion: In analyzing PVT properties for complex systems such as gas condensate reservoirs, the use of compositional modeling should be practiced. This will ensure accurate prediction of the reservoir fluid properties.


SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1636-1656
Author(s):  
Qian Sun ◽  
Luis F. Ayala

Summary Considerable research has been focused on the development of rate-transient-analysis (RTA) models to estimate the reserves of gas/condensate reservoirs. Currently, broadly deployed RTA tools rely on multiphase pseudopressure concepts to enable multiphase production-data analysis. In any multiphase pseudopressure calculation, the determination of the saturation/pressure (So/p) relationship plays a vital role because it directly influences the ability of multiphase RTA methods to reliably forecast original gas in place (OGIP). In this work, we present a thermodynamics-based So/p model that provides a better understanding of the phase behavior for the boundary-dominated gas/condensate reservoirs. The proposed So/p model is derived from the thermodynamic nature of extended black-oil formulations. A noniterative flash-calculation protocol is used to establish the So/p path in the condensate-buildup region. The developed method can be coupled with RTA tools and services for the calculation of multiphase pseudopressure. In this work, we present case studies of three gas/condensate reservoirs with different types of fluids. Two RTA multiphase analysis models are used to scrutinize the production data using the newly proposed So/p relationship, and results are compared with the use of a traditional steady-state method coupled with constant-volume-depletion (CVD) data. Results of the case studies show that RTA models that use the proposed So/p consistently yield more accurate OGIP estimation. Thus, this work presents a practical approach to remove commonly used yet potentially faulty assumptions in multiphase RTA applications for liquid-rich gas/condensate reservoirs.


2011 ◽  
Author(s):  
Anton Yushkov ◽  
A.S. Romanov ◽  
I.R. R. Mukminov ◽  
A.E. Ignatiev ◽  
S.V. Romashkin ◽  
...  

1994 ◽  
Author(s):  
P.J. Sänger ◽  
H.K. Bjørnstad ◽  
Jacques Hagoort

2012 ◽  
Vol 9 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Mohammadi-Khanaposhtani ◽  
Alireza Bahramian ◽  
Peyman Pourafshary ◽  
Babak Aminshahidy ◽  
Babak Fazelabdolabadi

Sign in / Sign up

Export Citation Format

Share Document