Arsenic Speciation, Seasonal Transformations, and Co-distribution with Iron in a Mine Waste-Influenced Palustrine Emergent Wetland

2000 ◽  
Vol 34 (18) ◽  
pp. 3937-3943 ◽  
Author(s):  
Matthew J. La Force ◽  
Colleen M. Hansel ◽  
Scott Fendorf
2016 ◽  
Vol 13 (4) ◽  
pp. 641 ◽  
Author(s):  
Violet Diacomanolis ◽  
Barry N. Noller ◽  
Raijeli Taga ◽  
Hugh H. Harris ◽  
Jade B. Aitken ◽  
...  

Environmental context X-ray absorption near-edge spectroscopy (XANES) was applied to give arsenic chemical forms directly in the solid phase of mine wastes from two mine sites, including fluvial dispersion. The arsenic speciation data explained the variation of in vitro bioaccessibility and in vivo bioavailability (rat uptake) data of the mine wastes. The As speciation from XANES fitting supported the hypothesis that when soil intake is adjusted for bioaccessibility, the potential health risk estimate to local residents is significantly lower. Abstract X-ray absorption near-edge spectroscopy (XANES) was used for arsenic speciation in mine processing and waste samples from two mines in northern Australia. XANES fitting of model compound spectra to samples was used, in combination with in vitro bioaccessibility data for the pure compounds, to predict bioaccessibility of each mine waste sample (Pearson’s correlation R2=0.756, n=51). The XANES fitting data for a smaller set of the samples (n=12) were compared with in vivo bioavailability and in vitro bioaccessibility data. The bioavailability of arsenic (As) in the mine wastes, which is dependent, at least in part, on its oxidation state, was found to be <14% (0.9–13.5%) for arsenite (AsIII) and <17% (3.5–16.4) for arsenate (AsV). Arsenic bioaccessibility in the mine wastes ranged from 8–36% in the stomach to 1–16% in the intestinal phase, indicating that a small portion of the total As concentration in the mine waste was available for absorption. A significant correlation showed that bioaccessibility can be used as a predictor of bioavailability. The XANES results support that bioavailability and bioaccessibility results were very similar and show a strong association with the presence of ferric arsenate and As sulfides. It can be concluded that, when soil intake is adjusted for bioaccessibility, the potential health risk estimate to local residents exposed to the mine waste was significantly lower than that estimated based on a 100% bioavailability often employed for the risk assessment.


2017 ◽  
Vol 16 (9) ◽  
pp. 2089-2096
Author(s):  
Artwell Kanda ◽  
George Nyamadzawo ◽  
Jephita Gotosa ◽  
Nathan Nyamutora ◽  
Willis Gwenzi

Data Series ◽  
10.3133/ds378 ◽  
2008 ◽  
Author(s):  
Denise M. Argue ◽  
Richard G. Kiah ◽  
Nadine M. Piatak ◽  
Robert R. Seal ◽  
Jane M. Hammarstrom ◽  
...  

2003 ◽  
Author(s):  
Kathleen S. Smith ◽  
Thomas R. Wildeman ◽  
LaDonna M. Choate ◽  
Sharon F. Diehl ◽  
David L. Fey ◽  
...  

2020 ◽  
Vol 57 (2) ◽  
pp. 85-93
Author(s):  
B Sinha ◽  
K Bhattacharyya

The purpose of the present study was to assess arsenic (As) speciation in rice from West Bengal, India, in order to improve understanding of the health risk posed by arsenic in Indian rice. Rice is a potentially important route of human exposure to arsenic, especially in populations with rice-based diets. However, arsenic toxicity varies greatly with species. Determination of arsenic (As) species in rice is necessary because inorganic As species are more toxic than organic As. Total arsenic was determined by inductively coupled plasma mass spectrometry; arsenite, arsenate, monomethylarsonic acid, and dimethyarsinic acid were quantified by high-performance liquid chromatography- inductively coupled plasma mass spectrometry. The analysis of a rice flour certified reference material (SRM-1568-a) were evaluated for quality assurance. The use of 2M TFA for extraction with an isocratic mobile phase was optimized for extraction and employed for arsenic speciation in rice. The extraction method showed a high recovery of arsenic. Most of the As species in rice were noticed to be inorganic [Arsenite (As-III), Arsenate As-V]. It appeared very clear from the present study that inorganic arsenic shared maximum arsenic load in rice straw while in grains it is considerably low. As species recovered from rice grain and straw are principally As-III and As-V with a little share of DMA and almost non-detectable MMA and As-B. The order of As species in rice grain revealed in this study were As-III (54.5-65.4 %)>As-V(21.2-28.3%)>DMA(5.2%).


2018 ◽  
Vol 69 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Cristina Dinu ◽  
Eleonora Mihaela Ungureanu ◽  
Gabriela Geanina Vasile ◽  
Lidia Kim ◽  
Ioana Ionescu ◽  
...  

The soils situated near the abandoned mines are highly polluted with metals due to the discharge and dispersion of mine waste into nearby air, water (surface and groundwater) and soil. Heavy metals may be transferred to humans through ingestion, inhalation or dermal absorption and can produce serious health problems affect the nervous, endocrine and immune systems, hematopoietic function and cellular metabolism. This paper investigates the presence of metallic elements from fourteen soil samples (seven sampling points) and thirty-six vegetation samples (different types of leaves, plants, roots and tree barks). The samples were collected from six different sites located in an abandoned mining area and from a point (blank sample) located 5 km in the SV direction of the quarry. The results obtained for soil samples show an overrun of the alert and / or intervention threshold for the following metals: arsenic, cadmium, cobalt, copper, manganese, nickel, lead and zinc. The analytical investigation for vegetation samples indicated that concentration for calcium, magnesium, cadmium, chromium, manganese, nickel, lead, zinc were situated over the normal range in some samples. The analytical investigations were performed by optical emission spectrometry (ICP-OES). The study�s conclusion indicates that, as result of soil acidic pH and high mobility of some metals, metallic elements migrate from soil to vegetation.


Sign in / Sign up

Export Citation Format

Share Document