One-dimensional dense-fluid detonation wave structure

1983 ◽  
Vol 87 (15) ◽  
pp. 2795-2798 ◽  
Author(s):  
Mohamed Safwat Abdelazeem ◽  
William G. Hoover
1987 ◽  
Vol 48 (C4) ◽  
pp. C4-119-C4-124
Author(s):  
H. N. PRESLES ◽  
P. BAUER ◽  
C. GUERRAUD ◽  
D. DESBORDES

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yaroslava E. Poroshyna ◽  
Aleksander I. Lopato ◽  
Pavel S. Utkin

Abstract The paper contributes to the clarification of the mechanism of one-dimensional pulsating detonation wave propagation for the transition regime with two-scale pulsations. For this purpose, a novel numerical algorithm has been developed for the numerical investigation of the gaseous pulsating detonation wave using the two-stage model of kinetics of chemical reactions in the shock-attached frame. The influence of grid resolution, approximation order and the type of rear boundary conditions on the solution has been studied for four main regimes of detonation wave propagation for this model. Comparison of dynamics of pulsations with results of other authors has been carried out.


2014 ◽  
Vol 33 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Alexander A. Charakhch'yan ◽  
Konstantin V. Khishchenko

AbstractThe one-dimensional problem on bilatiral irradiation by proton beams of the plane layer of condensed DT mixture with length 2H and density ρ0 ≤ 100ρs, where ρs is the fuel solid-state density at atmospheric pressure and temperature of 4 K, is considered. The proton kinetic energy is 1 MeV, the beam intensity is 1019 W/cm2 and duration is 50 ps. A mathematical model is based on the one-fluid two-temperature hydrodynamics with a wide-range equation of state of the fuel, electron and ion heat conduction, DT fusion reaction kinetics, self-radiation of plasma and plasma heating by α-particles. If the ignition occurs, a plane detonation wave, which is adjacent to the front of the rarefaction wave, appears. Upon reflection of this detonation wave from the symmetry plane, the flow with the linear velocity profile along the spatial variable x and with a weak dependence of the thermodynamic functions of x occurs. An appropriate solution of the equations of hydrodynamics is found analytically up to an arbitrary constant, which can be chosen so that the analytical solution describes with good accuracy the numerical one. The gain with respect to the energy of neutrons G ≈ 200 at Hρ0 ≈ 1 g/cm2, and G > 2000 at Hρ0 ≈ 5 g/cm2. To evaluate the ignition energy Eig of cylindrical targets, the quasi-1D model, limiting trajectories of α-particles by a cylinder of a given radius, is suggested. The model reproduces the known theoretical dependence Eig ~ ρ0−2 and gives Eig = 160 kJ for ρ0 = 100ρs ≈ 22 g/cm3.


Author(s):  
Supraj Prakash ◽  
Romain Fiévet ◽  
Venkatramanan Raman ◽  
Jason R. Burr ◽  
Kenneth H. Yu

Sign in / Sign up

Export Citation Format

Share Document