IR spectrum of highly vibrationally excited osmium tetraoxide in the region of strong nonlinear interaction of vibrational modes

1990 ◽  
Vol 94 (4) ◽  
pp. 1294-1297 ◽  
Author(s):  
O. V. Boyarkin ◽  
S. I. Ionov ◽  
A. A. Stuchebrukhov ◽  
V. N. Bagratashvili ◽  
M. S. Dzhidzhoev
1990 ◽  
Vol 45 (9-10) ◽  
pp. 1117-1130
Author(s):  
Otto L. Stiefvater

Abstract The pure rotational spectra of molecules in 21 vibrationally excited states of the heterocyclic compound furazan (C2H2N2O) have been detected and studied by DRM microwave spectroscopy. Rotational parameters are reported for the 12 fundamental levels below 1500 cm-1 , and the contri-butions from 10 vibrational modes to the effective rotational constants and to the inertia defect of furazan are calculated.


1999 ◽  
Vol 19 (1-4) ◽  
pp. 335-341 ◽  
Author(s):  
Hiromi Okamoto ◽  
Takakazu Nakabayashi ◽  
Mitsuo Tasumi

A method for estimating vibrational quantum numbers of vibrationally excited transients in solution is proposed. In this method, we calculate anti-Stokes Raman excitation profiles (REPs) which are characteristic of the initial vibrational states involved in the Raman process, and compare them with observed anti-Stokes intensities. We have applied this method to vibrationally hot molecules of canthaxanthin in the So state and those of trans-stilbene in the S1 state. For canthaxanthin, it has been found that the vibrationally excited transients are for the most part on the ν=1 level of the C═C stretching mode, and that excess vibrational energy is statistically distributed among all intramolecular vibrational modes. As for S1 stilbene, vibrational transients are shown to be mostly on the ν=1 level for two vibrational modes examined, while the excess vibrational energy is probably localised on the olefinic C═C stretching mode.


1984 ◽  
Vol 62 (4) ◽  
pp. 322-329 ◽  
Author(s):  
V. Menoux ◽  
R. Le Doucen ◽  
C. Haeusler ◽  
J. C. Deroche

The spectrum of the dimer (NO)2 in the gas phase has been studied in the near infrared at temperatures between 118 and 138 K. More specifically, the measure of absorption intensity of the ν4 and ν1 + ν4 bands has yielded the heat of formation of the dimer, −2.25 kcal/mol at 128 K, and revealed the influence of the low vibrational modes on this measure. The observation of the ν4 – ν6, difference band has yielded the wave number value of the ν6, fundamental band, forbidden in the infrared. The rotational constants of the vibrationally excited state were found to be larger than the ground state rotational constants, this result being very unusual.


1988 ◽  
Vol 47 (3) ◽  
pp. 229-232 ◽  
Author(s):  
S. I. Ionov ◽  
A. A. Stuchebryukhov ◽  
V. N. Bagratashvili ◽  
V. N. Lokhman ◽  
G. N. Makarov ◽  
...  

1983 ◽  
Vol 1 (5) ◽  
pp. 177-183 ◽  
Author(s):  
R. L. Woodin ◽  
C. F. Meyer

The mechanism of IR multiple photon excitation through the dense manifold of vibrational states, usually called the quasicontinuum, of a vibrationally excited molecule is one of the unresolved issues in the field of laser chemistry. The effects of deuterium substitution on propylene IR multiple photon excitation are used to identify the vibrational modes leading to efficient excitation. Optoacoustic energy deposition data show that for propylene, 3 μm multiple photon excitation occurs most efficiently at the methyl group, and furthermore that efficient methyl group excitation requires the CH group on the adjacent carbon. Thus 3 μm multiple photon excitation of propylene, while involving energy deposition directly into several spatially discrete intramolecular groups, is found to be enhanced by specific intramolecular couplings. Implications of this result for mechanisms of IR multiple photon excitation are discussed.


1992 ◽  
Vol 2 (10) ◽  
pp. 1929-1939 ◽  
Author(s):  
Mariette Barthes ◽  
Juegen Eckert ◽  
Susanna W. Johnson ◽  
Jacques Moret ◽  
Basil I. Swanson ◽  
...  

Author(s):  
Manuel Goubet ◽  
Robert Georges ◽  
P. Roy ◽  
Atef Jabri ◽  
Pascale Soulard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document