The Ultraviolet Absorption Spectra of Aqueous Solutions of Sulphur Dioxide and some of its Derivatives

1926 ◽  
Vol 30 (2) ◽  
pp. 266-276 ◽  
Author(s):  
F. H. Getman
1957 ◽  
Vol 35 (9) ◽  
pp. 1002-1009 ◽  
Author(s):  
R. C. Turner ◽  
Kathleen E. Miles

The absorption spectra of the ferric ion and its first hydrolysis product in an aqueous solution of perchloric acid was determined. The Fe3+ ion has two absorption bands, one with a maximum at 240 mμ and another which extends into the region below 200 mμ. The FeOH2+ ion also has two absorption bands, the maxima of which occur at 300 mμ and 205 mμ. A figure shows the magnitude of the absorption of each of these ions from 200 to 350 mμ.


1979 ◽  
Vol 32 (12) ◽  
pp. 2611 ◽  
Author(s):  
NA McAskill ◽  
DF Sangster

The ultraviolet absorption spectra of the transient species formed during the pulse radiolysis of styrene and peroxydisulfate (S2O82)solutions showed that a benzyl-type radical was formed from styrene and the SO4- radical. The effect of adding Cl- was also studied. These results are in conflict with the claim1 that a phenylethyl radical was formed from SO4-' via the styrene cation radical. That study was made on acetonitrile solutions of styrene, S2O82-, CuCl2 and LiCl and the present results suggest that up to 70% of the SO4-' radicals may have been converted into Cl2-1 radical which then reacted with styrene.


1954 ◽  
Vol 26 (7) ◽  
pp. 1240-1242 ◽  
Author(s):  
R. P. Buck ◽  
Samang. Singhadeja ◽  
L. B. Rogers

2013 ◽  
Vol 779 (1) ◽  
pp. 40 ◽  
Author(s):  
Yu-Jong Wu ◽  
Hui-Fen Chen ◽  
Shiang-Jiun Chuang ◽  
Tzu-Ping Huang

1950 ◽  
Vol 187 (1) ◽  
pp. 299-312
Author(s):  
R.L. Sinsheimer ◽  
J.F. Scott ◽  
J.R. Loofbourow

2021 ◽  
Vol 22 (2) ◽  
pp. 633
Author(s):  
Konrad Skotnicki ◽  
Slawomir Ostrowski ◽  
Jan Cz. Dobrowolski ◽  
Julio R. De la Fuente ◽  
Alvaro Cañete ◽  
...  

The azide radical (N3●) is one of the most important one-electron oxidants used extensively in radiation chemistry studies involving molecules of biological significance. Generally, it was assumed that N3● reacts in aqueous solutions only by electron transfer. However, there were several reports indicating the possibility of N3● addition in aqueous solutions to organic compounds containing double bonds. The main purpose of this study was to find an experimental approach that allows a clear assignment of the nature of obtained products either to its one-electron oxidation or its addition products. Radiolysis of water provides a convenient source of one-electron oxidizing radicals characterized by a very broad range of reduction potentials. Two inorganic radicals (SO4●−, CO3●−) and Tl2+ ions with the reduction potentials higher, and one radical (SCN)2●− with the reduction potential slightly lower than the reduction potential of N3● were selected as dominant electron-acceptors. Transient absorption spectra formed in their reactions with a series of quinoxalin-2-one derivatives were confronted with absorption spectra formed from reactions of N3● with the same series of compounds. Cases, in which the absorption spectra formed in reactions involving N3● differ from the absorption spectra formed in the reactions involving other one-electron oxidants, strongly indicate that N3● is involved in the other reaction channel such as addition to double bonds. Moreover, it was shown that high-rate constants of reactions of N3● with quinoxalin-2-ones do not ultimately prove that they are electron transfer reactions. The optimized structures of the radical cations (7-R-3-MeQ)●+, radicals (7-R-3-MeQ)● and N3● adducts at the C2 carbon atom in pyrazine moiety and their absorption spectra are reasonably well reproduced by density functional theory quantum mechanics calculations employing the ωB97XD functional combined with the Dunning’s aug-cc-pVTZ correlation-consistent polarized basis sets augmented with diffuse functions.


Sign in / Sign up

Export Citation Format

Share Document