Role of the metal atom in the reversible uptake of molecular oxygen. The structures of the molecular oxygen complexes formed by bis[bis(diphenylphosphino)ethane]iridium(I)hexafluorophosphate and its rhodium analog

1969 ◽  
Vol 91 (23) ◽  
pp. 6301-6310 ◽  
Author(s):  
John A. McGinnety ◽  
Nicholas C. Payne ◽  
James A. Ibers
1988 ◽  
Vol 66 (9) ◽  
pp. 2219-2228 ◽  
Author(s):  
John M. Goodings ◽  
Quang Tran ◽  
Nicholas S. Karellas

The same fuel-rich, premixed, conical, methane–oxygen flame at 2200 K and atmospheric pressure used for studies of Fe, Co, Ni, Cu, and Zn in Part I (1) is doped with the same concentration (~1 ppm) of Sc, Ti, V, Cr, and Mn to complete the first row of ten transition metals. Metallic ions of these metals and their compounds formed by chemical ionization reactions with H3O+ are observed by sampling the flame through a nozzle into a quadrupole mass spectrometer. Concentration profiles of individual and total cations are measured as a function of distance along the flame axis, and also mass spectra at a fixed point in the burnt gas. If A is the metal atom, the observed ions can be represented by four hydrate series including (a) A+•nH2O, (b) AOH+•nH2O, (c) AO+•nH2O, and (d) AO2H+•nH2O with n = 0–3 or 4, giving a maximum of four ligands around the metal atom. However, alternative isomeric structures are possible for each of the four basic series (e.g. AO+•2H2O ~ A(OH)2+•H2O ~ A(OH)3H+). The ions observed with Cr and Mn, in common with those of Fe, Co, Ni, and Cu, strongly favour series (a). On the other hand, Sc is completely different; the ions of series (c) are dominant. All four series are observed with each of Ti and V. Series (b) dominates for Ti and series (c) for V; ions from series (d) were observed for the first time. The ion chemistry of these metals is discussed in detail with emphasis on the probable chemical ionization reactions responsible for metallic ion formation. The pre-eminent role of proton transfer processes is apparent.


1967 ◽  
Vol 47 (5) ◽  
pp. 1883-1884 ◽  
Author(s):  
Kenji Kawaoka ◽  
A. U. Khan ◽  
David R. Kearns

Sign in / Sign up

Export Citation Format

Share Document