Interactions of Phenol and Indole with Metal Ions in the Gas Phase:  Models For Tyr and Trp Side-Chain Binding

1999 ◽  
Vol 121 (10) ◽  
pp. 2259-2268 ◽  
Author(s):  
Victor Ryzhov ◽  
Robert C. Dunbar
Keyword(s):  
2005 ◽  
Vol 123 (8) ◽  
pp. 084301 ◽  
Author(s):  
Wutharath Chin ◽  
François Piuzzi ◽  
Jean-Pierre Dognon ◽  
Iliana Dimicoli ◽  
Michel Mons

1981 ◽  
Vol 46 (10) ◽  
pp. 2354-2363 ◽  
Author(s):  
Svatomír Kmošták ◽  
Karel Setínek

The catalytic activity of sulphonated macroporous styrene-divinylbenzene copolymers, the exchange capacity of which was neutralized from 30, 50 and 80% by Fe(III) ions and from 30% by Na ions and that of Wofatit Y-37 ion exchanger neutralized from 10% of its total exchange capacity by several transition metal ions and by sodium has been studied in isomerisation of cyclohexene and dehydration of 1-propanol in the gas phase at 130 °C. It was demonstrated that in both reactions transition metal ions exhibit additional effect to the expected neutralization of the polymer acid groups. In the case of cyclohexene isomerization, this effect depends on the degree of crosslinking of polymer mass of the catalyst. Such dependence has not been, however, observed in dehydration of 1-propanol. The type of transition metal ions did not exhibit any significant effect on the catalytic activity of the polymer catalysts studied.


2021 ◽  
Author(s):  
Violeta A. Vetsova ◽  
Katherine R. Fisher ◽  
Henning Lumpe ◽  
Alexander Schäfer ◽  
Erik K. Schneider ◽  
...  

<div>Understanding the role of metal ions in biology can lead to the development of new catalysts for</div><div>several industrially important transformations. Lanthanides are the most recent group of metal ions</div><div>that have been shown to be important in biology i.e. - in quinone-dependent methanol</div><div>dehydrogenases (MDH). Here we evaluate a pyrroloquinoline quinone and 1-aza-15-crown-5 based</div><div>ligand platform as scaffold for Ca2+ , Ba2+ , La3+ and Lu3+ biomimetics of MDH and we evaluate the</div><div>importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction</div><div>using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps</div><div>instead of 11 and 33% instead of 0.6% yield) for biomimetic ligands based on PQQ. We show that</div><div>when studying biomimetics for MDH, larger metal ions and those with lower charge in this case</div><div>promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand</div><div>design which must be considered when studying biomimetics. To gain more information on the</div><div>structures and impact of counterions of the complexes, we performed collision induced dissociation</div><div>(CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve</div><div>the structure of the complexes in the gas phase we combined DFT-calculations and ion mobility</div><div>measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures</div><div>using Electron Paramagnetic Resonance (EPR) spectroscopy and show the emergence of a quinone-</div><div>based radical during the reaction with substrate and base.</div>


Sign in / Sign up

Export Citation Format

Share Document