Zinc Transformations in Neutral Soil and Zinc Efficiency in Maize Fertilization

2006 ◽  
Vol 54 (25) ◽  
pp. 9488-9495 ◽  
Author(s):  
Jose M. Alvarez ◽  
Demetrio Gonzalez
2014 ◽  
Vol 65 (1) ◽  
pp. 61 ◽  
Author(s):  
Mohsin S. Al-Fahdawi ◽  
Jason A. Able ◽  
Margaret Evans ◽  
Amanda J. Able

Durum wheat (Triticum turgidum ssp. durum) is susceptible to Fusarium pseudograminearum and sensitive to zinc (Zn) deficiency in Australian soils. However, little is known about the interaction between these two potentially yield-limiting factors, especially for Australian durum varieties. The critical Zn concentration (concentration of Zn in the plant when there is a 10% reduction in yield) and degree of susceptibility to F. pseudograminearum was therefore determined for five Australian durum varieties (Yawa, Hyperno, Tjilkuri, WID802, UAD1153303). Critical Zn concentration averaged 24.6 mg kg–1 for all durum varieties but differed for the individual varieties (mg kg–1: Yawa, 21.7; Hyperno, 22.7; Tjilkuri, 24.1; WID802, 24.8; UAD1153303, 28.7). Zinc efficiency also varied amongst genotypes (39–52%). However, Zn utilisation was similar amongst genotypes under Zn-deficient or Zn-sufficient conditions (0.51–0.59 and 0.017–0.022 g DM μg–1 Zn, respectively). All varieties were susceptible to F. pseudograminearum but the development of symptoms and detrimental effect on shoot biomass and grain yield were significantly greater in Tjilkuri. Even though crown rot symptoms may still be present, the supply of adequate Zn in the soil helped to maintain biomass and grain yield in all durum varieties. However, the extent to which durum varieties were protected from plant growth penalties due to crown rot by Zn treatment was genotype-dependent.


Holzforschung ◽  
2017 ◽  
Vol 71 (9) ◽  
pp. 759-763 ◽  
Author(s):  
Darrel Nicholas

AbstractSoil chemistry is known to have a major effect on the degradation of treated wood by basidiomycete fungi in laboratory and exterior ground-contact exposures. However, this topic received little attention from a soft-rot (SR) decay perspective. In the present paper, laboratory SR tests were performed with two different types of forest soils, which were also modified. Test samples, made ofPinus glabra(Walt.) (pine) were treated with four commercial copper/organic waterborne preservatives. In addition, soluble or particulate copper and the organic co-biocides quarternary ammonia compound or tebuconazole, were individually examined. After 19 months of soil bed exposure, moderate to severe degradation was observed in all treated samples in both soils. Surprisingly, microscopic examination showed minimal SR decay. Samples in the neutral soil had extensive tunneling bacterial deterioration and the best performance was observed with both copper/quaternary commercial formulations. Samples in the acidic soil appeared to have some white-rot and bacterial deterioration and all four commercial copper/organic formulations showed good statistically equivalent efficacy. For samples treated with only copper, the particulate copper samples performed statistically equivalent or slightly better than amine copper, while samples treated with only the organic quarternary or tebuconazole performed poorly in both soils.


2021 ◽  
Author(s):  
Lena Reifschneider ◽  
Vinzenz Franz Eichinger ◽  
Evelin Pihlap ◽  
Noelia Garcia-Franco ◽  
Anna Kühnel ◽  
...  

<p>The application of rock powder is an option to improve soil fertility while valorising the overburden material produced by industries. The “enhanced weathering” of silicate rock has also gained recent interest in the scientific community for its potential to mitigate climate change. However, the effect of rock powder on the soil physical properties remains unclear, especially under climate change (e.g., increasing drought events). Prior to any large scale application of rock powder, it is crucial to disentangle the potential effects of rock powder application on its environment. In a mesocosm experiment, we explored the effect of three rock powders on plant biomass, soil aggregation and organic carbon (OC) allocation within aggregates, in two soils with clayey and sandy textures, under regular watering or severe drought conditions. We demonstrate that the rock powder was the third factor after drought and soil texture significantly affecting the plant growth, resulting in a significant plant biomass decrease ranging from - 13 % to - 42 % compared with the control. We mainly attribute this effect to the increase of the already neutral soil pH, along with the release of excessive heavy metal amounts at a toxic range for the plant. Yet, we found that adding rock powder to the soil resulted in an increase of the relative amount of microaggregates in the soil by up to + 70 %, along with a re-distribution of OC within the fine fractions of the soil (up to + 32 % of OC in < 250 µm fractions). The new mineral-mineral and organo-mineral interactions promoted by the rock powder addition could potentially favour OC persistence in soil on the long term. With our results, we insist on the potential risks for plant growth associated to the application of rock powder when not handled properly. In addition to the current enthusiasm around the capacity of rock powder to enhance carbon sequestration in the inorganic form, we also encourage scientists to focus their research on its effect on soil structure properties and OC storage.</p>


1957 ◽  
Vol 8 (4) ◽  
pp. 301-314 ◽  
Author(s):  
L. H. P. Jones
Keyword(s):  

2019 ◽  
Vol 20 (2) ◽  
pp. 648-656 ◽  
Author(s):  
Pooja Singh ◽  
Arvind K. Shukla ◽  
Sanjib K. Behera ◽  
Pankaj K. Tiwari ◽  
Soumitra Das ◽  
...  

2010 ◽  
Vol 129-131 ◽  
pp. 312-316
Author(s):  
Wen He Wang ◽  
Jun Yi ◽  
Shi Ming Shen

Corrosion law and mechanism of 20# low-carbon steel in near-neutral soil along Yangtze River in Nanjing are studied by experiments of buried specimens in laboratory. In three kinds of soils, the corrosion features and products are analyzed by EDS and XRD, and the relation of corrosion rates, open-circuit potential and polarization curve with times are tested. The results indicated that corrosion rates changed incessantly along. On the condition of the same times, specimens and different soil samples, the corrosive degree of 1# and 2# specimens are serious, but 3# specimen is serious lightly. The corrosion products are main non-crystalloid, Fe (OH) 3 and Fe2O3.The changing tendency of different times and soils is different, and accordant with that of corrosion rates. The corrosion mechanism is discussed lastly, in near-neutral soils, oxygen is deoxidized and OH- ions are created in cathode area, iron is oxidized and the hydration of Fe2+ ions is created with water from soil in anode area, and Fe2+ are converted into more steady products Fe(OH)3 and Fe2O3.


Soil Research ◽  
2002 ◽  
Vol 40 (5) ◽  
pp. 791 ◽  
Author(s):  
J. Novillo ◽  
A. Obrador ◽  
L. M. López-Valdivia ◽  
J. M. Alvarez

Three liquid zinc (Zn) fertilisers were mixed with the upper 1.5 cm of columns representing 3 different soil profiles: Aquic Haploxeralf, of an acid nature and with hydromorphic problems; Calcic Haploxeralf, of a neutral nature; and Typic Xerorthents, of a calcareous nature. They were periodically irrigated for 60 days. Most of the applied Zn remained in the top of the soil when it was added as Zn-lignosulfonate plus EDTA or Zn-2-hydroxy-1,2,3-propanotricarboxilate. When Zn-EDTA plus fulvic and humic acid fertiliser was applied, Zn migrated and distributed throughout the soil resulting in losses of Zn by leaching of 2.29% in acidic soil, 27.36% in neutral soil, and 10.5% in calcareous soil of the Zn applied. The 3 fertilisers produce sufficient concentrations of the bioavailable Zn forms in the Ap horizons (DTPA and Mehlich-3 extractable Zn) for the cultivation of different plants. In the calcareous soil, which contained free CaCO3, the amount of Zn extracted by Mehlich-3 was higher than in soils with no free CaCO3. Distribution of Zn in the soil was studied at the beginning and end of the experiment by means of one sequential fractionation and showed that added Zn remained in more labile fractions for uptake by plants in the acid and neutral soils when compared with the control. When Zn was added to calcareous soil, no amount of Zn was detected in the water-soluble plus exchangeable fraction at the end of experiment for any Zn fertiliser source.


Sign in / Sign up

Export Citation Format

Share Document