overburden material
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 13)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 5 (2) ◽  
pp. 28-33
Author(s):  
O. Ajayi ◽  
K. A. Adekoya ◽  
O. P. Egwuatu ◽  
C. I. Konwea

Geological and geophysical investigations were conducted to assess the competence and structural integrity of the foundation site of the proposed Ife-dam at Kajola Village, Ile-Ife, Southwestern Nigeria. Geological investigation along the two (2) proposed dam axes revealed that the overburden material is loose to dense with angular shearing resistance (ɸ) of 27o to 41o. The soils are predominantly elastic silts; cohesive with considerable strength and stability. Geophysical investigation involving the Schlumberger Vertical Electrical Sounding delineated four (4) lithologies namely: topsoil with resistivity of 69 – 558 Ωm and thickness between 1.5 and 4.0 m; weathered sandy layer with resistivity from 123 – 586 Ωm and thickness between 6.5 and 20.4 m; partially weathered/ fractured basement with resistivity from 60 – 220 Ωm and thickness between 6.5 and 14.0 m; and the fresh basement rock with resistivity from 1337 – 10683 Ωm. There are indications of fractures at a depth of 32 m beneath Axis B extending to Axis A at a depth of 35 m. The subsurface materials are suitable to host a dam. Axis B is more appropriate for the dam axis, although the fracture zone should be factored into the design of the dam to prevent water seepage.


2021 ◽  
Vol 882 (1) ◽  
pp. 012064
Author(s):  
Jarwinda ◽  
A Badhurahman ◽  
G J Kusuma ◽  
R S Gautama

Abstract Coal mining activities, especially overburden material dumping can cause a negative impact into the environment, i.e., acid mine drainage, Acid mine drainage is characterized as low pH water with high sulphate and metal content produced from sulphidic-bearing overburden material with oxygen and water. In unsaturated condition, both of gaseous and water phases exist, acid mine drainage is generated. This study aims to characterize and model the water content in unsaturated condition and diffusion of oxygen of overburden material using the Hydrus 1-D software in a laboratory-scaled column. Laboratory-scaled column is initially filled with 75-cm height of dry overburden material and subjected into 5-cm constant head water level at the top of the column with free-flow condition at the bottom of column. The modelling result shows the water content of overburden material varies within depth and time elapsed and is saturated between 32400 minutes and 36000 minutes after initial wetting. Diffusivity of oxygen is linearly correlated with the water content of the overburden material at any given time and depth that varies between 1.34 × 10−7 m2/s and 8.80 × 10−12 m2/s. Water content and diffusivity of oxygen is expected to affect the generation of acid mine drainage in the overburden material.


2021 ◽  
Vol 2 (5) ◽  
pp. 18-23
Author(s):  
A. Nur ◽  
A. Taiyib ◽  
I. S. Nggada

Twenty-two Vertical Electrical Sounding (VES) were carried out to evaluate groundwater potential and aquifer protective capacity of the overburden units using Schlumberger configuration. It was observed that H-curve is the dominant curve type in the study area. The Geo-electro stratigraphic section revealed that the geologic sequence beneath the study area is composed of topsoil, highly weather basement, partly fractured basement and fresh basement. The first layer has an average thickness and resistivity of 1 m and 130 Ωm, respectively. The second layer has an average thickness of 14 m and an average resistivity of 53 Ωm. The third layer is partly fracture basement with an average resistivity of 747 Ωm while at some VES point represents fresh basement. The highly weathered basement and partly fracture basement layer make up the water bearing formation of the area. Dar-Zarrouk parameter revealed that the area under study has protective capacity range from weak to good capacity of the overburden material. Areas that are classified as poor and weak are indicative areas are thus vulnerable to infiltration of leachate and other surface contaminations. The groundwater potential of the area ranges from low to moderate potential; the moderate zone constitutes 86% while the low potential constitutes 14% of the study area. The transverse resistance within the study area ranges from 119.6 to 6983.7 ohms-m2 with an average value of 1024.59 ohms-m2. Hydraulic conductivity values determined from geoelectrical technique range from 3.05 to 38.04 m/day with an average value of 14.86 m/day.


Author(s):  
Onoka Adokiye ◽  
Mallam Abu

The Very Low Frequency Electromagnetic Method (VLF-EM) was used in view of detecting fractured or weathered zones within the University of Abuja Staff Quarters, Gwagwalada, Federal Capital Territory. The VLF -EM data measured along seventeen profiles of 400m at inter profile distance of 25m and interstation separation of 10m were done using the Scintrex ENVI Instrument. The VLF-EM survey revealed features significant to groundwater potential as conductive zones in the Fraser Filter maps and current density pseudosections. Three distinct zones were delineated based on the current density distribution. The fresh basement terrain corresponds to the highly resistive zone with current density value less than -20. The intermediate zone has current density value range of -20 to 25 typical of rocks and soil component which are slightly resistive to slightly conductive and corresponds to the partially saturated units. The third zone is highly conductive with current density value greater than 30 which includes the saturated weathered or fractured basement, fault zones, clay units and saturated sandy units within the study area. The north eastern, north western (profiles 1-8) and some parts of the southern region (profiles 16 and 17) of the study area show higher conductive zones than the central parts of the study area. This survey has helped in detecting sites that are suitable for groundwater exploration by identifying water bearing fractures and weathered zones in the study area. The areas with high conductivity response are areas with conductive overburden material such as clayey soil, saturated soil, water filled fractures and faults or weathered zone within the basement.


2021 ◽  
Vol 6 (1) ◽  
pp. 58-63
Author(s):  
Sukariyan Sukariyan ◽  
Marjenah Marjenah ◽  
Wawan Kustaiwan ◽  
Wahjuni Hartati ◽  
Garini Widosari

Plant growth is known as increasing volume of the diameter and height of the plant stem. Overburdenmaterial after coal mining has conditions where the soil structure is damaged, rock fragmentation ismixed and there is no layer of organic matter. The research objective is to determine the suitability ofplant growth in several growing media. The research method is done by planting test in a nursery withplant growth media consisting of top soil material as a control, a mixing of overburden material withfoliar fertilizer from sengon buto plants, and overburden growing media, the three media werecompared. Results of significance were less than 0.05. The growth medium affects the growth ofsengon buto (Enterolobium cyclocarpum Griseb) seedlings.


2021 ◽  
Author(s):  
Karan Rishabhkumar Jain ◽  
Mansour Edraki ◽  
Neil McIntyre

<p>Open-cut coal mining operations remove enormous quantities of overburden material inorder to access coal seam. Upon interaction with atmospheric conditions, this overburden material referred to as spoils from which salts are leached, possesses the risk of affecting surface and groundwater quality around the mine sites. Due to a distinct lack of field data on leachate rates and chemistry for full-scale spoil piles, studies have relied on geochemical testing at laboratory-scale experiments such as free-draining funnels and columns. While laboratory leaching techniques under a controlled environment are a general predictor of how spoil behaves upon weathering, there remain gaps in understanding the leachate rates taking into consideration actual particle size, flow rates, water content, temperature, and oxygen supply. This study proposes and assesses a new mesoscale approach for predicting salinity release from spoils that is designed to obtain data more relevant to the closure options under consideration. 5 coal mine spoils from 3 mines located in Queensland, Australia was sampled, characterised (physical, geochemical, and mineralogical), and were subjected to weathering at mesoscale (1-2 tonnes sample volume) leaching for 11 cycles under natural conditions. Results showed that soil-like spoils with significant pockets of less permeable clayey or silty material have the ability to retain and release solute slowly with time while rock-like spoils followed a steady decay rate. The mesoscale tests produced distinctive characteristic decay curves of salt release from typical soil-like and rock-like spoils and have been useful in the calibration of flow and moisture-dependent salt kinetic parameters. The mesocosm leaching approach developed as a part of this study was close to real-sized spoil conditions such that it mimicked the water/rock ratios, preferential flow paths, and governing solute transport processes.</p>


2021 ◽  
Author(s):  
Zongyuan Pan ◽  
Xuejun Chen ◽  
Xin Yang ◽  
Yu Song ◽  
Rulong Ban ◽  
...  

Abstract The cover collapse sinkholes occurred and concentrated in Wugaishan town, Chen zhou city since 1996. The results are combined with results of site investigation, geophysical prospecting and in situ groundwater monitoring data, allowing the development characteristics and formation mechanism of surficial collapse incidents to be summarized. Collapse sinkholes are significantly active in recent years and mostly develop in the rainy season ranging from April to June and generally show a zonal distribution along the topography of study area from SW to NE. 92.31 % of total collapse events occurred in the thickness of overburden material ranged from 0 to 15 m, which indicated that overlying material less than 15 m was easier to collapse. The results show that collapse sinkholes have strong relationship with characteristic of overburden material, which sharply decrease in internal physical and mechanical property of bottom layer. Furthermore, substantial cavities formed within bedrock are the best transport channels and storage spaces for the unconsolidated material, especially under the condition of dynamic undulation of groundwater level. The formation mechanism of collapse sinkhole is divided into three types: infiltration erosion, coupling air implosion with vacuum cavitation and saturation erosion. Each formation mechanism is related to changes of groundwater level. When groundwater level rose above the soil-bedrock interface, saturated subsoil were easier to disintegrate into small particles and migrate downward as the vertical seepage of groundwater. The hydraulic gradient increased and became the predominant factor for the development of soil cavity as groundwater level dropped below the soil-bedrock interface. Moreover, when groundwater level sharply surged up at the relative sealed environment, the upward erosion roof of cavity would be more likely to collapse by the entrapped air blasting.


2021 ◽  
Author(s):  
Lena Reifschneider ◽  
Vinzenz Franz Eichinger ◽  
Evelin Pihlap ◽  
Noelia Garcia-Franco ◽  
Anna Kühnel ◽  
...  

<p>The application of rock powder is an option to improve soil fertility while valorising the overburden material produced by industries. The “enhanced weathering” of silicate rock has also gained recent interest in the scientific community for its potential to mitigate climate change. However, the effect of rock powder on the soil physical properties remains unclear, especially under climate change (e.g., increasing drought events). Prior to any large scale application of rock powder, it is crucial to disentangle the potential effects of rock powder application on its environment. In a mesocosm experiment, we explored the effect of three rock powders on plant biomass, soil aggregation and organic carbon (OC) allocation within aggregates, in two soils with clayey and sandy textures, under regular watering or severe drought conditions. We demonstrate that the rock powder was the third factor after drought and soil texture significantly affecting the plant growth, resulting in a significant plant biomass decrease ranging from - 13 % to - 42 % compared with the control. We mainly attribute this effect to the increase of the already neutral soil pH, along with the release of excessive heavy metal amounts at a toxic range for the plant. Yet, we found that adding rock powder to the soil resulted in an increase of the relative amount of microaggregates in the soil by up to + 70 %, along with a re-distribution of OC within the fine fractions of the soil (up to + 32 % of OC in < 250 µm fractions). The new mineral-mineral and organo-mineral interactions promoted by the rock powder addition could potentially favour OC persistence in soil on the long term. With our results, we insist on the potential risks for plant growth associated to the application of rock powder when not handled properly. In addition to the current enthusiasm around the capacity of rock powder to enhance carbon sequestration in the inorganic form, we also encourage scientists to focus their research on its effect on soil structure properties and OC storage.</p>


Sign in / Sign up

Export Citation Format

Share Document