Evolution of Minor Polar Compounds and Antioxidant Capacity during Storage of Bottled Extra Virgin Olive Oil

2007 ◽  
Vol 55 (4) ◽  
pp. 1315-1320 ◽  
Author(s):  
Annalisa Romani ◽  
Chiara Lapucci ◽  
Claudio Cantini ◽  
Francesca Ieri ◽  
Nadia Mulinacci ◽  
...  
2017 ◽  
Vol 6 (5) ◽  
pp. 59 ◽  
Author(s):  
Nadia Segura ◽  
Yenny Pinchak ◽  
Natalie Merlinski ◽  
Miguel Amarillo ◽  
Camila Feller ◽  
...  

Extra virgin olive oil is recognized as a very stable oil because of its composition in fatty acids and its content in natural antioxidants (tocopherols and polyphenols). In the bibliography are works that address different aspects of this stability, from the duration of its useful life to its performance in the frying of foods. Some works also link their stability with the content of natural antioxidants. For example, Franco et al. (2014) studied the content of phenols and their antioxidant capacity in olive oils of seven different varieties. Baccouri et al. (2008) found a good correlation between the oxidative stability (measured in Rancimat) of the oils studied and the concentration of total phenols and tocopherols.


Author(s):  
Cristina Samaniego-Sánchez ◽  
Jose Javier Quesada-Granados ◽  
Maria Rosa Sánchez-Navarro ◽  
Herminia López-Garcia de la Serrana ◽  
Maria Carmen López-Martinez

Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 221
Author(s):  
Didem Peren Aykas ◽  
Ayse Demet Karaman ◽  
Burcu Keser ◽  
Luis Rodriguez-Saona

The aim of this study is to develop a non-targeted approach for the authentication of extra virgin olive oil (EVOO) using vibrational spectroscopy signatures combined with pattern recognition analysis. Olive oil samples (n = 151) were grouped as EVOO, virgin olive oil (VOO)/olive oil (OO), and EVOO adulterated with vegetable oils. Spectral data was collected using a compact benchtop Raman (1064 nm) and a portable ATR-IR (5-reflections) units. Oils were characterized by their fatty acid profile, free fatty acids (FFA), peroxide value (PV), pyropheophytins (PPP), and total polar compounds (TPC) through the official methods. The soft independent model of class analogy analysis using ATR-IR spectra showed excellent sensitivity (100%) and specificity (89%) for detection of EVOO. Both techniques identified EVOO adulteration with vegetable oils, but Raman showed limited resolution detecting VOO/OO tampering. Partial least squares regression models showed excellent correlation (Rval ≥ 0.92) with reference tests and standard errors of prediction that would allow for quality control applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Florencia de Alzaa ◽  
Claudia Guillaume ◽  
Leandro Ravetti

The aim of this study was to assess the food nutritional profiles of potato chips, chicken nuggets, and broccoli and their palatability after deep-frying with different oils. The trials consisted of 4 cycles of deep-frying at 180°C for 4 minutes using extra virgin olive oil (EVOO), canola, and grapeseed oils. Samples of food and oils were taken untreated and after the treatments for sensorial and chemical analysis. EVOO and canola oil deep-fried food were preferred by their colour, but canola fried food was disliked because of its flavour. Results showed that there is a transference between food and oils regarding fatty acid profile and antioxidant content as well as trans fatty acids (TFAs) and polar compounds (PCs). All food presented more antioxidants and monounsaturated fatty acids after having been cooked with EVOO than after cooking with canola and grapeseed oils. Highest PCs in food were found when using canola oil and grapeseed oils. EVOO was shown to decrease the PCs in chips and chicken nuggets. PCs were not detected in raw broccoli, and broccoli cooked in EVOO showed the lowest PCs content. Canola and grapeseed oils increased the TFAs in food, whereas EVOO decreased the TFAs in the chips and maintained the initial TFAs levels in chicken nuggets and broccoli. This study shows that EVOO improves the nutritional profile of the food when compared with canola and grapeseed oils when deep-frying without any negative impact on palatability or appearance.


2020 ◽  
Vol 2020 ◽  
pp. 1-33 ◽  
Author(s):  
Flavia Franconi ◽  
Ilaria Campesi ◽  
Annalisa Romani

Noncommunicable diseases are long-lasting and slowly progressive and are the leading causes of death and disability. They include cardiovascular diseases (CVD) and diabetes mellitus (DM) that are rising worldwide, with CVD being the leading cause of death in developed countries. Thus, there is a need to find new preventive and therapeutic approaches. Polyphenols seem to have cardioprotective properties; among them, polyphenols and/or minor polar compounds of extra virgin olive oil (EVOO) are attracting special interest. In consideration of numerous sex differences present in CVD and DM, in this narrative review, we applied “gender glasses.” Globally, it emerges that olive oil and its derivatives exert some anti-inflammatory and antioxidant effects, modulate glucose metabolism, and ameliorate endothelial dysfunction. However, as in prescription drugs, also in this case there is an important gender bias because the majority of the preclinical studies are performed on male animals, and the sex of donors of cells is not often known; thus a sex/gender bias characterizes preclinical research. There are numerous clinical studies that seem to suggest the benefits of EVOO and its derivatives in CVD; however, these studies have numerous limitations, presenting also a considerable heterogeneity across the interventions. Among limitations, one of the most relevant in the era of personalized medicine, is the non-attention versus women that are few and, also when they are enrolled, sex analysis is lacking. Therefore, in our opinion, it is time to perform more long, extensive and lessheterogeneous trials enrolling both women and men.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 313 ◽  
Author(s):  
Kin Sum Leung ◽  
Ho Hang Leung ◽  
Ching Yu Wu ◽  
Jean-Marie Galano ◽  
Thierry Durand ◽  
...  

Consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs) rich fatty fish is known to provide an array of health benefits. However, high temperature in food preparation, such as pan-frying, potentially degrades eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) of the n-3 PUFAs by heat oxidation. The addition of antioxidant condiments, and herbs in particular, may retard PUFA peroxidation and preserve EPA and DHA during pan-frying. In this study, different types of antioxidant condiments (sage, rosemary, black peppercorn, thyme, basil, and garlic) were tested for antioxidant capacity, and the condiment with the highest capacity was selected for its effect on lipid oxidation of salmon. The changes in fatty acids and lipid peroxidation of salmon, during pan-frying with the selected condiment (olive oil infused with rosemary, RO(infused)), were compared with salmon prepared in extra virgin olive oil, olive oil, or without oil. The total saturated fatty acid was found to be less in pan fried salmon with RO(infused). None of the oil type conserved EPA- and DHA-content in salmon. However, RO(infused) lowered lipid peroxidation by lessening hydroperoxide and 4-HNE formation, but not the other related products (HDHA, HETE, isoprostanes). Our observation indicates that the antioxidant capacity of RO(infused), when it is incorporated with food, becomes limited.


Sign in / Sign up

Export Citation Format

Share Document