Cellular Uptake of Carotenoid-Loaded Oil-in-Water Emulsions in Colon Carcinoma Cells in Vitro

2006 ◽  
Vol 54 (25) ◽  
pp. 9366-9369 ◽  
Author(s):  
Henelyta S. Ribeiro ◽  
José M. M. Guerrero ◽  
Karlis Briviba ◽  
Gerhard Rechkemmer ◽  
Heike P. Schuchmann ◽  
...  
Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
R Paduch ◽  
M Tomczyk ◽  
A Wiater ◽  
A Dudek ◽  
M Pleszczynska ◽  
...  

1999 ◽  
Vol 142 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Hideki Nishibori ◽  
Masahiko Watanabe ◽  
Shin Narai ◽  
Tetsuro Kubota ◽  
Chitose Matsubara ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3363
Author(s):  
Livia Elena Chilug ◽  
Dana Niculae ◽  
Radu Anton Leonte ◽  
Alexandrina Nan ◽  
Rodica Turcu ◽  
...  

Recent advances and large-scale use of hybrid imaging modalities like PET-CT have led to the necessity of improving nano-drug carriers that can facilitate both functional and metabolic screening in nuclear medicine applications. In this study, we focused on the evaluation of four potential imaging nanoparticle structures labelled with the 68Ga positron emitter. For this purpose, we functionalized NHS-activated PEG-gold nanoparticles with 68Ga-DOTA-Neuromedin B, 68Ga-DOTA-PEG(4)-BBN(7-14), 68Ga-DOTA-NT and 68Ga-DOTA-Neuromedin N. In vitro binding kinetics and specific binding to human HT-29 colon carcinoma cells and DU-145 prostate carcinoma cells respectively were assessed, over 75% retention being obtained in the case of 68Ga-DOTA-PEG(4)-BBN(7-14)-AuNP in prostate tumour cells and over 50% in colon carcinoma cells. Biodistribution in NU/J mice highlighted a three-fold uptake increase in tumours at 30 min post-injection of 68Ga-DOTA-NT-AuNP and 68Ga-DOTA-PEG(4)-BBN(7-14)-AuNP compared to 68Ga-DOTA-NT and 68Ga-DOTA-PEG(4)-BBN(7-14) respectively, therewith fast distribution in prostate and colon tumours and minimum accumulation in non-targeted tissues.


2020 ◽  
Vol 13 (3) ◽  
pp. 245-250
Author(s):  
Mahdi Hatamipour ◽  
Mahmoud R. Jaafari ◽  
Amir A. Momtazi-Borojeni ◽  
Mahin Ramezani ◽  
Amirhossein Sahebkar

Background and Aims: Niclosamide is an established anti-helminthic drug, which has recently been shown to inhibit the growth of various cancer cells. To exploit the potential anti-tumor activity of this drug for systemic use, the problem of low aqueous solubility should be addressed. The present study tested the in vivo anti-tumor effects of a recently developed nanoliposomal preparation of niclosamide in an experimental model of colon carcinoma. Methods : The cytotoxicity of nanoliposomal niclosamide on CT26 colon carcinoma cells was evaluated using the MTT test. Inhibition of tumor growth was investigated in BALB/c mice bearing CT26 colon carcinoma cells. The animals were randomly divided into 4 groups including: 1) untreated control, 2) liposomal doxorubicin (15 mg/kg; single intravenous dose), 3) liposomal niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks), and 4) free niclosamide (1 mg/kg/twice a week; intravenously for 4 weeks). To study therapeutic efficacy, tumor size and survival were monitored in 2-day intervals for 40 days. Results: In vitro results indicated that nanoliposomal and free niclosamide could exert cytotoxic effects with IC50 values of 4.5 and 2.5 μM, respectively. According to in vivo studies, nanoliposomal niclosamide showed a higher growth inhibitory activity against CT26 colon carcinoma cells compared with free niclosamide as revealed by delayed tumor growth and prolongation of survival. Conclusion : Nnaoliposomal encapsulation enhanced anti-tumor properties of niclosamide in an experimental model of colon carcinoma.


Sign in / Sign up

Export Citation Format

Share Document