transforming growth factor β1
Recently Published Documents


TOTAL DOCUMENTS

3910
(FIVE YEARS 461)

H-INDEX

129
(FIVE YEARS 10)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 189
Author(s):  
Alina Hagen ◽  
Heidrun Holland ◽  
Vivian-Pascal Brandt ◽  
Carla U. Doll ◽  
Thomas C. Häußler ◽  
...  

Platelet lysate (PL) is an attractive platelet-based therapeutic tool and has shown promise as xeno-free replacement for fetal bovine serum (FBS) in human and equine mesenchymal stromal cell (MSC) culture. Here, we established a scalable buffy-coat-based protocol for canine PL (cPL) production (n = 12). The cPL was tested in canine adipose MSC (n = 5) culture compared to FBS. For further comparison, equine adipose MSC (n = 5) were cultured with analogous equine PL (ePL) or FBS. During canine blood processing, platelet and transforming growth factor-β1 concentrations increased (p < 0.05 and p < 0.001), while white blood cell concentrations decreased (p < 0.05). However, while equine MSC showed good results when cultured with 10% ePL, canine MSC cultured with 2.5% or 10% cPL changed their morphology and showed decreased metabolic activity (p < 0.05). Apoptosis and necrosis in canine MSC were increased with 2.5% cPL (p < 0.05). Surprisingly, passage 5 canine MSC showed less genetic aberrations after culture with 10% cPL than with FBS. Our data reveal that using analogous canine and equine biologicals does not entail the same results. The buffy-coat-based cPL was not adequate for canine MSC culture, but may still be useful for therapeutic applications.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yinan Hu ◽  
Qi Wang ◽  
Jun Yu ◽  
Qing Zhou ◽  
Yanhan Deng ◽  
...  

AbstractIdiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Tartrate-resistant acid phosphatase 5 (ACP5) performs a variety of functions. However, its role in IPF remains unclear. Here, we demonstrate that the levels of ACP5 are increased in IPF patient samples and mice with bleomycin (BLM)-induced pulmonary fibrosis. In particular, higher levels of ACP5 are present in the sera of IPF patients with a diffusing capacity of the lungs for carbonmonoxide (DLCO) less than 40% of the predicted value. Additionally, Acp5 deficiency protects mice from BLM-induced lung injury and fibrosis coupled with a significant reduction of fibroblast differentiation and proliferation. Mechanistic studies reveal that Acp5 is upregulated by transforming growth factor-β1 (TGF-β1) in a TGF-β receptor 1 (TGFβR1)/Smad family member 3 (Smad3)-dependent manner, after which Acp5 dephosphorylates p-β-catenin at serine 33 and threonine 41, inhibiting the degradation of β-catenin and subsequently enhancing β-catenin signaling in the nucleus, which promotes the differentiation, proliferation and migration of fibroblast. More importantly, the treatment of mice with Acp5 siRNA-loaded liposomes or Acp5 inhibitor reverses established lung fibrosis. In conclusions, Acp5 is involved in the initiation and progression of pulmonary fibrosis and strategies aimed at silencing or suppressing Acp5 could be considered as potential therapeutic approaches against pulmonary fibrosis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Koichiro Tanaka ◽  
Koki Chiba ◽  
Kazuhiko Nara

The concept of “blood stasis” – called yū xiě in Chinese, Oketsu in Japanese – is one of the unique pathophysiology of traditional medicine that originated in China and inherited in Korea and Japan. This concept is related to the multiple aspects of hemodynamic disorders brought on by quantitative and qualitative changes. It theorizes that the quantitative changes of “blood stasis” are related to peripheral circulatory insufficiency. When chronic qualitative changes of “blood stasis” produce stagnant blood that turns into a pathological product, it could cause inflammation and lead to organic changes. Trauma induced hematomas, that are considered to be a quantitative change of blood, are also a form of blood stasis. The basic medicine research on Keishibukuryogan (KBG)–a Japanese name in Traditional Japanese Medicine (Kampo) for one of the most common anti- “blood stasis” prescriptions, also known as gui-zhi-fu-ling-wan (GFW) in Chinese in Traditional Chinese Medicine (TCM)–indicated that the initiation of quantitative changes was closely related to loss of redox balances on endothelial function induced by oxidative stress. The following qualitative changes were related to coagulopathy, hyper viscosity; anti-platelet aggregation, lipid metabolism; a regulation of systemic leptin level and/or lipid metabolism, inflammatory factor; cyclooxygenase-1,2 (COX-1, 2), interleukin-6, 8 tumor necrosis factor-α, macrophage infiltration, hyperplasia, tissue fibrosis and sclerosis caused by transforming growth factor-β1 and fibronectin, the dysfunction of regulated cell deaths, such as, apoptosis, autophagy, ferroptosis and ovarian hormone imbalance. Clinically, KBG was often used for diseases related to Obstetrics and Gynecology, Endocrine Metabolism, Rheumatology and Dermatology. In this review, we give an overview of the mechanism and its current clinical application of KBG through a summary of the basic and clinical research and discuss future perspective.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-325065
Author(s):  
Chen-Ting Hung ◽  
Tung-Hung Su ◽  
Yen-Ting Chen ◽  
Yueh-Feng Wu ◽  
You-Tzung Chen ◽  
...  

Background and objectivesLiver fibrosis (LF) occurs following chronic liver injuries. Currently, there is no effective therapy for LF. Recently, we identified thioredoxin domain containing 5 (TXNDC5), an ER protein disulfide isomerase (PDI), as a critical mediator of cardiac and lung fibrosis. We aimed to determine if TXNDC5 also contributes to LF and its potential as a therapeutic target for LF.DesignHistological and transcriptome analyses on human cirrhotic livers were performed. Col1a1-GFPTg, Alb-Cre;Rosa26-tdTomato and Tie2-Cre/ERT2;Rosa26-tdTomato mice were used to determine the cell type(s) where TXNDC5 was induced following liver injury. In vitro investigations were conducted in human hepatic stellate cells (HSCs). Col1a2-Cre/ERT2;Txndc5fl/fl (Txndc5cKO) and Alb-Cre;Txndc5fl/fl (Txndc5Hep-cKO) mice were generated to delete TXNDC5 in HSCs and hepatocytes, respectively. Carbon tetrachloride treatment and bile duct ligation surgery were employed to induce liver injury/fibrosis in mice. The extent of LF was quantified using histological, imaging and biochemical analyses.ResultsTXNDC5 was upregulated markedly in human and mouse fibrotic livers, particularly in activated HSC at the fibrotic foci. TXNDC5 was induced by transforming growth factor β1 (TGFβ1) in HSCs and it was both required and sufficient for the activation, proliferation, survival and extracellular matrix production of HSC. Mechanistically, TGFβ1 induces TXNDC5 expression through increased ER stress and ATF6-mediated transcriptional regulation. In addition, TXNDC5 promotes LF by redox-dependent JNK and signal transducer and activator of transcription 3 activation in HSCs through its PDI activity, activating HSCs and making them resistant to apoptosis. HSC-specific deletion of Txndc5 reverted established LF in mice.ConclusionsER protein TXNDC5 promotes LF through redox-dependent HSC activation, proliferation and excessive extracellular matrix production. Targeting TXNDC5, therefore, could be a potential novel therapeutic strategy to ameliorate LF.


2021 ◽  
Author(s):  
Peter Quicke ◽  
Yilin Sun ◽  
Mar Arias-Garcia ◽  
Corey D. Acker ◽  
Mustafa B. A. Djamgoz ◽  
...  

Cancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to 'excitable' tissues, relatively little is known about cancer cell Vm dynamics. With high-throughput, cellular-resolution Vm imaging, we characterized Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells and compared to non-cancerous breast epithelial MCF-10A cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identified four classes ranging from "noisy" to "blinking/waving". The Vm of MDA-MB-231 cells exhibited spontaneous, transient hyperpolarizations that were inhibited by the voltage-gated sodium channel blocker tetrodotoxin. The Vm of MCF-10A cells was comparatively static, but fluctuations increased following treatment with transforming growth factor-β1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations is acquired during transformation and may participate in oncogenesis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12686
Author(s):  
Dan He ◽  
Zhong-bao Ruan ◽  
Gui-xian Song ◽  
Ge-cai Chen ◽  
Fei Wang ◽  
...  

Background At present, there is no effective treatment for myocardial fibrosis in atrial fibrillation (AF). It is reported that miR-15a-5p is abnormally expressed in AF patients but its specific role remains unclear. This study aims to investigate the effect of miR-15a-5p in myocardial fibrosis. Methods Left atrial appendage (LAA) tissues were collected from AF and non-AF patients. In lipopolysaccharide (LPS) stimulated H9C2 cells, miR-15a-5p mimic, inhibitor, pcDNA3.1-Smad7 and small interfering RNA-Smad7 (siRNA-Smad7) were respectively transfected to up-regulate or down-regulate the intracellular expression levels of miR-15a-5p and Smad7. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB) were used to determine the expression levels of miR-15a-5p, Smad7, transforming growth factor β1 (TGF-β1) and collagen I. Cell counting kit-8 (CCK-8) and ethylene deoxyuridine (EdU) were used to determine cell viability and proliferation capacity, respectively. Dual-luciferase was used to detect whether miR-15a-5p interacted with Smad7, hydroxyproline (HYP) and Hematoxylin-Eosin (HE) staining were used to detect tissue fibrosis. Results The expression levels of miR-15a-5p, TGF-β1 and collagen I were up-regulated, while Smad7 was down-regulated in AF tissues and LPS-stimulated cells. MiR-15a-5p mimic can inhibit the expression of Smad7, and the dual-luciferase experiment confirmed their interaction. MiR-15a-5p inhibitor or pcDNA3.1-Smad7 can inhibit LPS-induced fibrosis and cell proliferation, while siRNA-Smad7 can reverse the changes caused by miR-15a-5p inhibitor. Conclusion We combined clinical studies with LPS-stimulated H9C2 cell model to validate the role of miR-15a-5p in the regulation of Smad7 and fibrosis. Taken together, the miR-15a-5p/Smad7 pathway might be a potential target for AF therapy.


Sign in / Sign up

Export Citation Format

Share Document