Plant uptake of unextracted (bound) residues from an organic soil treated with prometryn

1980 ◽  
Vol 28 (6) ◽  
pp. 1096-1098 ◽  
Author(s):  
Shahamat U. Khan
1990 ◽  
Vol 70 (3) ◽  
pp. 435-444 ◽  
Author(s):  
N. MALIK ◽  
D. S. H. DRENNAN

Experiments were conducted to obtain a better understanding of the role of pH on the availability of fluridone (1-methyl-3-phenyl-5-[3-(trifluoromethyl) phenyl]-4(1 H)-pyridinone) in soil solution when used as a selective herbicide and the partitioning into aqueous and sediment phases when employed for aquatic plant control. Phytotoxicity of fluridone to seedling sorghum (Sorghum bicolor L.) plants increased with increasing pH of the sand-nutrient solution medium. Since stability and plant uptake of fluridone by bioassay plants were not affected by solution pH, the increasing phytotoxicity at basic pH was attributed to less adsorption and hence higher availability of the herbicide in solution. Soil adsorption studies with 14C-fluridone confirmed this trend, as the soil solution concentration at equilibrium increased from 0.091 to 0.258 μg mL−1 and from 0.216 to 0.354 μg mL−1, respectively, as pH of a sandy loam and silty clay loam increased from 3 to 9. In contrast, adsorption on the sandy loam and silty clay loam for the same pH range decreased from 4.108 to 2.435 μg g−1 and from 2.850 to 1.484 μg g−1, respectively. Smaller but significant changes in adsorption were also observed for an organic soil over this range. Key words: Herbicide, fluridone, pH, uptake, soil adsorption


1997 ◽  
Vol 45 (9) ◽  
pp. 3677-3680 ◽  
Author(s):  
Luisella Celi ◽  
Mara Gennari ◽  
Morris Schnitzer ◽  
Shahamat U. Khan
Keyword(s):  

1997 ◽  
Vol 45 (2) ◽  
pp. 514-520 ◽  
Author(s):  
Jerzy Dec ◽  
Konrad Haider ◽  
V. Rangaswamy ◽  
Andreas Schäffer ◽  
Errol Fernandes ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray

2017 ◽  
Vol 4 (2) ◽  
pp. 87-91
Author(s):  
Ekamaida Ekamaida

The soil fertility aspect is characterized by the good biological properties of the soil. One important element of the soil biological properties is the bacterial population present in it. This research was conducted in the laboratory of Microbiology University of Malikussaleh in the May until June 2016. This study aims to determine the number of bacterial populations in soil organic and inorganic so that can be used as an indicator to know the level of soil fertility. Data analysis was done by T-Test that is by comparing the mean of observation parameter to each soil sample. The sampling method used is a composite method, which combines 9 of soil samples taken from 9 sample points on the same plot diagonally both on organic soil and inorganic soil. The results showed the highest bacterial population was found in total organic soil cfu 180500000 and total inorganic soil cfu 62.500.000


Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Sign in / Sign up

Export Citation Format

Share Document