arid condition
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 25)

H-INDEX

4
(FIVE YEARS 1)

MAUSAM ◽  
2021 ◽  
Vol 42 (4) ◽  
pp. 409-410
Author(s):  
R. S. SINGH ◽  
A. S. RAO ◽  
Y. S. RAMAKRISHNA

2021 ◽  
Vol 9 ◽  
Author(s):  
Nisarg Makwana ◽  
S. P. Prizomwala ◽  
Archana Das ◽  
Binita Phartiyal ◽  
Aashima Sodhi ◽  
...  

The climatic conditions during the beginning of the last 5,000 years have been discussed, debated, and documented from various parts of the Indian subcontinent, due to the human–climate interrelationship. In the present study, we report a multi-proxy dataset encompassing the widely used ∼ geochemical and mineral magnetic proxies supported by radiocarbon and optical chronologies from the Banni Plains of the Rann of Kachchh, western India. Our results support the earlier observations of the prolonged wetter climatic condition synchronous with the mature phase of Harappan era which witnessed a short and intense arid condition at the terminal part of the mature Harappan phase. The climate system dramatically fluctuated during the last five millennia from pulsating between relatively arid (4,800–4,400 years BP, 3,300–3,000 years BP, and at 2,400 years BP) and relatively humid phases (>4,800 years BP, 4,000–3,300 years BP, 1900–1,400 years BP, and 900–550 years BP). The multi-proxy dataset shows a gradual strengthening of the monsoonal conditions from the Banni Plains during the late Harappan phase. Apart from this, the high sedimentation rate (>1 mm/yr) recorded from the Banni Plains suggests it can be tapped as a robust archive to reconstruct multi-decadal to centennial climatic events spanning the Holocene epoch.


Author(s):  
Lucia N. Marius ◽  
Maria N. T. Shipandeni ◽  
Luis A. Rodríguez-Campos ◽  
Emmanuel L. K. Osafo ◽  
Irvin D. T. Mpofu ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252393
Author(s):  
Muhammad Ijaz ◽  
Ahmad Nawaz ◽  
Sami Ul-Allah ◽  
Ahmad Sher ◽  
Abdul Sattar ◽  
...  

Peanut (Arachis hypogea L.) is an important nut crop extensively grown in rainfed regions of Pakistan. The crop requires low inputs; thus, could grow successfully under diverse environmental conditions. Due to pegging ability, peanut grows aggressively in sandy and sandy-loam soils. However, it has not introduced to Thal region of southern Punjab, Pakistan. A two-year field experiment was conducted to optimize sowing dates for two peanut genotypes (‘BARI-2016’ and ‘NO-334’) in Thal region (Layyah). Similarly, a yield trial was conducted at Chakwal where both genotypes are extensively grown. Five sowing dates (10th April, 1st May, 20th May, 10th June and 30th June) were included in the study. The highest seed yield was obtained with early sown crop (10th April) during both years. Pod formation reduced with increasing atmospheric temperature and no pods were formed on the plants sown on 30th June. Decreased pod formation seemed a major reason for low yield in late-sown crop. The highest yield was observed for the crop sown on 10th April, which was decreased by 40% for the crop sown on 1st May. Genotype ‘BARI-2016’ performed better for seed yield at both locations compared with ‘NO-334’. The results suggested that genotype ‘BARI-2016’ is more adaptive to arid and semi-arid condition under rainfed or irrigated conditions. Sowing peanut at optimum time would increase seed yield in arid and semi-arid regions. Nonetheless, ‘BARI-2016’ can be grown under rainfed and irrigated conditions successfully.


2021 ◽  
Author(s):  
Stéphane Bonnet ◽  
Valeria Zavala-Ortiz ◽  
Sébastien Carretier

<p>Although a transition from aggradation to incision is observed in many natural alluvial fans and is usually related to variations in climate, the condition driving such change remain unclear. We address this problem here by considering laboratory experiments of coupled catchment-fans systems forced by oscillatory precipitation. In the 8 experiments considered here, eroded materials from an uplifting mountain may deposit on a plateau, erosion being driven by the surface runoff of water from an artificial rainfall device. These experiments, 700 to 900 minutes-long, were performed with the same uplift rate but with different sequences of variations of the rainfall rate (10 to 40 minutes-long) between two extreme values. The topography was digitized every 10 minutes thanks to a high-resolution laser sheet.</p><p>We observe that the sediment (Qs) and water (Qw) fluxes at the outlet of mountain catchments continuously vary with time, not only because of precipitation oscillations but also because of the dynamic state of the landscape. For a given precipitation rate, variations of Qs and Qw depend on whether the catchments enlarge or shrink, with additional variations of Qs depending on the equilibrium degree (steady-state or not). Depending on these conditions, we document a large variety of trends of Qs vs Qw in rivers at catchment outlets, Qs increasing or decreasing with Qw, or being independent of Qw. For a given catchment, oscillations in precipitation rate then drive alternations between two individual Qs vs Qw trends, the slope of these trends being indicative of the sediment concentration in the mini-rivers at the outlet of catchments that feed alluvial fans.</p><p>Our experiments indicate that incision of alluvial fans is controlled by two necessary conditions. First, it occurs when rainfall increases and goes with a decrease of the Qs/Qw ratio, i.e. with a decrease of concentration at the outlet of the catchment. Second, this control is modulated by the slope of the fan, incision only occurring for fans above a threshold slope. Then, the decrease in sediment concentration required to initiate the incision is weak for steeper fans, those that developed under a mean dry climate. A larger drop in concentration is necessary for gentle fans, those that develop under a mean wetter climate.</p><p>Several studies already demonstrated how a decrease of Qs or an increase of Qw drives incision. We show here that these two parameters are also coupled and covariate following the dynamical state of catchments. We also demonstrate that the decrease of the Qs/Qw ratio required for initiating the incision of a fan is lower for steeper fans, that is for fans that develop under more arid condition.</p><p>We conclude that a given amplitude of climate change won’t have the same imprint on landscapes, erosion and transport depending on the mean prevailing climate.</p>


2021 ◽  
Vol 9 (1) ◽  
pp. 203-206
Author(s):  
Mohamedalmontasir A. M. Mohamed ◽  
Mahmoud H. Mohamed

This study was conducted at the private farm, Southern part of Alfashir Airport, under the semi-arid condition of North Darfur State, Sudan. The objective was to test the effect of different seed rates (2, 4, 6, and 8 kg/ha) of Alycicarpus ovalifolius on plant growth attributes and forage yield, during two consecutive seasons (2017 and 2018) aiming to find the most suitable seed rate under rainfed condition in semi-arid zones to be used in pasture improvement. The experiment was laid-out in a randomized complete block design with four replicates, the plot size was 8x5 m. Data collected included Plant density, plant ground cover and dry matter yield. There were significant effects of seeding rates on plant density, cover and yield. Seed rate of 8kg/ha had highest plant density, cover and yield. But the seed rate of 6kg/ha had the optimum performance, this seed rate was recommended for sowing Alycicarpus ovalifolius at semi-arid condition for range improvement. Further research work is needed to assess seeding rates across different ecological zones in North Darfur State.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Lei Zhao ◽  
Yanjun Zhou ◽  
Jianbei Li ◽  
Yucheng Xia ◽  
Weiyun Wang ◽  
...  

Abstract Background For microorganisms on a paper surface, the lack of water is one of the most important stress factors. A strain of Bacillus megaterium FDU301 was isolated from plaques on a paper surface using culture medium with polyethylene glycol 200 (PEG200) to simulate an arid condition. Global transcriptomic analysis of B. megaterium FDU301 grown under normal and simulated arid conditions was performed via RNA-seq technology to identify genes involved in arid stress adaptation. Results The transcriptome of B. megaterium FDU301 grown in LB medium under arid (15% PEG200 (w/w)) and normal conditions were compared. A total of 2941 genes were differentially expressed, including 1422 genes upregulated and 1519 genes downregulated under arid conditions. Oxidative stress-responsive regulatory genes perR, fur, and tipA were significantly upregulated, along with DNA protecting protein (dps), and catalase (katE). Genes related to Fe2+ uptake (feoB), sporulation stage II (spoIIB, spoIIE, spoIIGA), small acid-soluble spore protein (sspD), and biosynthesis of compatible solute ectoine (ectB, ectA) were also highly expressed to various degrees. Oxidative phosphorylation-related genes (atpB, atpE, atpF, atpH, atpA, atpG, atpD, atpC) and glycolysis-related genes (pgk, tpiA, frmA) were significantly downregulated. Conclusion This is the first report about transcriptomic analysis of a B. megaterium to explore the mechanism of arid resistance. Major changes in transcription were seen in the arid condition simulated by PEG200 (15%), with the most important one being genes related to oxidative stress. The results showed a complex mechanism for the bacteria to adapt to arid stress.


2020 ◽  
Author(s):  
Lei Zhao ◽  
Yanjun Zhou ◽  
Jianbei Li ◽  
Yucheng Xia ◽  
Weiyun Wang ◽  
...  

Abstract Background: For microorganisms on a paper surface, the lack of water is one of the most important stress factors. A strain of Bacillus megaterium FDU301 was isolated from plaques on a paper surface using culture medium with polyethylene glycol 200 (PEG200) to simulate an arid condition. Global transcriptomic analysis of B. megaterium FDU301 grown under normal and simulated arid conditions was performed via RNA-seq technology to identify genes involved in arid stress adaptation.Results: The transcriptome of B. megaterium FDU301 grown in LB medium under arid (15% PEG200 (w/w)) and normal conditions were compared. A total of 2941 genes were differentially expressed, including 1422 genes upregulated and 1519 genes downregulated under arid conditions. Oxidative stress-responsive regulatory genes perR, fur, and tipA were significantly upregulated, along with DNA protecting protein (dps), and catalase (katE). Genes related to Fe2+ uptake (feoB), sporulation stage II (spoIIB, spoIIE, spoIIGA), small acid-soluble spore protein (sspD), and biosynthesis of compatible solute ectoine (ectB, ectA) were also highly expressed to various degrees. Oxidative phosphorylation-related genes (atpB, atpE, atpF, atpH, atpA, atpG, atpD, atpC) and glycolysis-related genes (pgk, tpiA, frmA) were significantly downregulated.Conclusion: This is the first report about transcriptomic analysis of a B. megaterium to explore the mechanism of arid resistance. Major changes in transcription were seen in the arid condition simulated by PEG200 (15%), with the most important one being genes related to oxidative stress. The results showed a complex mechanism for the bacteria to adapt to arid stress.


Sign in / Sign up

Export Citation Format

Share Document