active site cavity
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Tatsuya Ishikawa ◽  
Nayuta Furukawa ◽  
Emilia Caselli ◽  
Fabio Prati ◽  
Magdalena A. Taracila ◽  
...  

The rise of multidrug resistant (MDR) Gram-negative bacteria has accelerated the development of novel inhibitors of class A and C β-lactamases. Presently, the search for novel compounds with new mechanisms of action is a clinical and scientific priority. To this end, we determined the 2.13-Å resolution crystal structure of S02030, a boronic acid transition state inhibitor (BATSI), bound to MOX-1 β-lactamase, a plasmid-borne, expanded-spectrum AmpC β-lactamase (ESAC) and compared this to the previously reported aztreonam (ATM)-bound MOX-1 structure. Superposition of these two complexes shows that S02030 binds in the active-site cavity more deeply than ATM. In contrast, the SO3 interactions and the positional change of the β-strand amino acids from Lys315 to Asn320 were more prominent in the ATM-bound structure. MICs were performed using a fixed concentration of S02030 (4 μg/ml) as a proof of principle. Microbiological evaluation against a laboratory strain of Escherichia coli expressing MOX-1 revealed that MICs against ceftazidime are reduced from 2.0 to 0.12 μg/ml when S02030 is added at a concentration of 4 μg/ml. The IC50 and Ki of S02030 vs. MOX-1 were 1.25 ± 0.34 and 0.56 ± 0.03 μM, respectively. Monobactams such as ATM can serve as informative templates for design of mechanism-based inhibitors such as S02030 against ESAC β-lactamases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tomas Kouba ◽  
Dominik Vogel ◽  
Sigurdur R. Thorkelsson ◽  
Emmanuelle R. J. Quemin ◽  
Harry M. Williams ◽  
...  

AbstractLassa virus is endemic in West Africa and can cause severe hemorrhagic fever. The viral L protein transcribes and replicates the RNA genome via its RNA-dependent RNA polymerase activity. Here, we present nine cryo-EM structures of the L protein in the apo-, promoter-bound pre-initiation and active RNA synthesis states. We characterize distinct binding pockets for the conserved 3’ and 5’ promoter RNAs and show how full-promoter binding induces a distinct pre-initiation conformation. In the apo- and early elongation states, the endonuclease is inhibited by two distinct L protein peptides, whereas in the pre-initiation state it is uninhibited. In the early elongation state, a template-product duplex is bound in the active site cavity together with an incoming non-hydrolysable nucleotide and the full C-terminal region of the L protein, including the putative cap-binding domain, is well-ordered. These data advance our mechanistic understanding of how this flexible and multifunctional molecular machine is activated.


2021 ◽  
Vol 22 (21) ◽  
pp. 11992
Author(s):  
Andrii Mazur ◽  
Pavel Grinkevich ◽  
Radka Chaloupkova ◽  
Petra Havlickova ◽  
Barbora Kascakova ◽  
...  

Haloalkane dehalogenases (EC 3.8.1.5) play an important role in hydrolytic degradation of halogenated compounds, resulting in a halide ion, a proton, and an alcohol. They are used in biocatalysis, bioremediation, and biosensing of environmental pollutants and also for molecular tagging in cell biology. The method of ancestral sequence reconstruction leads to prediction of sequences of ancestral enzymes allowing their experimental characterization. Based on the sequences of modern haloalkane dehalogenases from the subfamily II, the most common ancestor of thoroughly characterized enzymes LinB from Sphingobium japonicum UT26 and DmbA from Mycobacterium bovis 5033/66 was in silico predicted, recombinantly produced and structurally characterized. The ancestral enzyme AncLinB-DmbA was crystallized using the sitting-drop vapor-diffusion method, yielding rod-like crystals that diffracted X-rays to 1.5 Å resolution. Structural comparison of AncLinB-DmbA with their closely related descendants LinB and DmbA revealed some differences in overall structure and tunnel architecture. Newly prepared AncLinB-DmbA has the highest active site cavity volume and the biggest entrance radius on the main tunnel in comparison to descendant enzymes. Ancestral sequence reconstruction is a powerful technique to study molecular evolution and design robust proteins for enzyme technologies.


2021 ◽  
Vol 22 (19) ◽  
pp. 10862
Author(s):  
Carolina F. Rodrigues ◽  
Patrícia T. Borges ◽  
Magali F. Scocozza ◽  
Diogo Silva ◽  
André Taborda ◽  
...  

Bacillus subtilis BsDyP belongs to class I of the dye-decolorizing peroxidase (DyP) family of enzymes and is an interesting biocatalyst due to its high redox potential, broad substrate spectrum and thermostability. This work reports the optimization of BsDyP using directed evolution for improved oxidation of 2,6-dimethoxyphenol, a model lignin-derived phenolic. After three rounds of evolution, one variant was identified displaying 7-fold higher catalytic rates and higher production yields as compared to the wild-type enzyme. The analysis of X-ray structures of the wild type and the evolved variant showed that the heme pocket is delimited by three long conserved loop regions and a small α helix where, incidentally, the mutations were inserted in the course of evolution. One loop in the proximal side of the heme pocket becomes more flexible in the evolved variant and the size of the active site cavity is increased, as well as the width of its mouth, resulting in an enhanced exposure of the heme to solvent. These conformational changes have a positive functional role in facilitating electron transfer from the substrate to the enzyme. However, they concomitantly resulted in decreasing the enzyme’s overall stability by 2 kcal mol−1, indicating a trade-off between functionality and stability. Furthermore, the evolved variant exhibited slightly reduced thermal stability compared to the wild type. The obtained data indicate that understanding the role of loops close to the heme pocket in the catalysis and stability of DyPs is critical for the development of new and more powerful biocatalysts: loops can be modulated for tuning important DyP properties such as activity, specificity and stability.


Author(s):  
Hind Basbous ◽  
Anne Volbeda ◽  
Patricia Amara ◽  
Roman Rohac ◽  
Lydie Martin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Woo Cheol Lee ◽  
Sungjae Choi ◽  
Ahjin Jang ◽  
Jiwon Yeon ◽  
Eunha Hwang ◽  
...  

AbstractAryl polyenes (APE) are one of the most widespread secondary metabolites among gram-negative bacteria. In Acinetobacter baumannii, strains belonging to the virulent global clone 2 (GC2) mostly contain APE biosynthesis genes; its relevance in elevated pathogenicity is of great interest. APE biosynthesis gene clusters harbor two ketosynthases (KSs): the heterodimeric KS-chain length factor complex, ApeO-ApeC, and the homodimeric ketoacyl-acyl carrier protein synthase I (FabB)-like KS, ApeR. The role of the two KSs in APE biosynthesis is unclear. We determined the crystal structures of the two KSs from a pathogenic A. baumannii strain. ApeO-ApeC and ApeR have similar cavity volumes; however, ApeR has a narrow cavity near the entrance. In vitro assay based on the absorption characteristics of polyene species indicated the generation of fully elongated polyene with only ApeO-ApeC, probably because of the funnel shaped active site cavity. However, adding ApeR to the reaction increases the throughput of APE biosynthesis. Mutagenesis at Tyr135 in the active site cavity of ApeR reduces the activity significantly, which suggests that the stacking of the aryl group between Tyr135 and Phe202 is important for substrate recognition. Therefore, the two KSs function complementarily in the generation of APE to enhance its production.


2021 ◽  
Author(s):  
Benoit Arragain ◽  
Quentin Durieux Trouilleton ◽  
Florence Baudin ◽  
Stephen Cusack ◽  
Guy Schoehn ◽  
...  

Segmented negative-strand RNA bunyaviruses encode a multi-functional polymerase that performs genome replication and transcription. Here, we establish conditions for in vitro activity of La Crosse virus polymerase and visualize by cryo-electron microscopy its conformational dynamics, unveiling the precise molecular mechanics underlying its essential activities. Replication initiation is coupled to distal duplex promoter formation, endonuclease movement, prime-and-realign loop extension and closure of the polymerase core that direct the template towards the active site. Transcription initiation depends on C-terminal region closure and endonuclease movements that firstly prompt primer cleavage and secondly promote primer entry in the active site. Product realignment after priming, observed in replication and transcription, is triggered by the prime-and-realign loop. Switch to elongation results in polymerase reorganization and core region opening to facilitate template-product duplex formation in the active site cavity. The detailed uncovered mechanics will be crucial for future design of antivirals counteracting bunyaviral life-threatening pathogens.


2021 ◽  
Author(s):  
Shafi Mahmud ◽  
Abdo A Elfiky ◽  
Al Amin ◽  
Sumon Chandro Mohanto ◽  
Ekhtiar Rahman ◽  
...  

The newly emerged human coronavirus, SARS-CoV-2, had begun to spread last year and sparked worldwide. In this study, molecular docking is utilized to test some previously approved drugs against the SARS-CoV-2 nonstructural protein 15 (Nsp15). We screened 23 drugs, from which three (saquinavir, valrubicin and aprepitant) show a paramount predicted binding affinity (-9.1, -9.6 and -9.2 kcal/mol, respectively) against SARS-CoV-2 Nsp15. Moreover, saquinavir and aprepitant make nonbonded interactions with Leu201 in the active site cavity of Nsp15, while the drug valrubicin interacts with Arg199 and Leu201. This binding pattern may be effective against the targeted protein, leading to Nsp15 blockage and virus abolition. Additionally, the pharmacological properties of the screened drugs are known since they have been approved against different viruses.


2021 ◽  
Author(s):  
Tomas Kouba ◽  
Dominik Vogel ◽  
Sigurdur R. Thorkelsson ◽  
Emmanuelle R. J. Quemin ◽  
Harry M. Williams ◽  
...  

Lassa virus, which causes annual outbreaks in West Africa with increasing case numbers in recent years, is recognized by the WHO R&D blueprint as a significant threat for public health with high epidemic potential and no effective countermeasures. The viral large (L) protein, which contains the RNA-dependent RNA polymerase, is a key player for transcription of viral mRNA and genome replication. Here we present nine cryo-EM structures of Lassa virus L protein in the apo-, promoter-bound pre-initiation and active RNA synthesis states. We characterize distinct binding pockets for the conserved genomic 3' and 5' promoter RNAs and show how full-promoter binding induces a distinct pre-initiation conformation. In the apo- and elongation states, the endonuclease is inhibited by the binding of two distinct L protein peptides in the active site, respectively, whereas in the pre-initiation state, the endonuclease is uninhibited. In the stalled, early elongation state, a template-product duplex is bound in the active site cavity together with an incoming non-hydrolysable nucleotide. In this configuration, the full C-terminal region of the L protein, including the putative cap-binding domain, is highly ordered. The structural data are complemented by in vitro and cell-based studies testing a broad range of L protein mutants to probe functional relevance. These data advance our mechanistic understanding of how this flexible and multifunctional molecular machine is activated and will underpin antiviral drug development targeting the arenavirus L protein.


2021 ◽  
Author(s):  
Florian Bleffert ◽  
Joachim Granzin ◽  
Muttalip Caliskan ◽  
Stephan Schott-Verdugo ◽  
Meike Siebers ◽  
...  

Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. A dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network which likely explains the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the GPL remodeling pathway for virulence and pave the way for the development of a novel therapeutic class of antibiotics targeting PlaF-mediated membrane GPL remodeling.


Sign in / Sign up

Export Citation Format

Share Document