Difference in Conformation of Virginiamycin M1 in Chloroform and Bound Form in the 50S Ribosome or Streptogramin Acetyltransferase

2004 ◽  
Vol 57 (5) ◽  
pp. 415 ◽  
Author(s):  
Jason Dang ◽  
B. Mikael Bergdahl ◽  
Frances Separovic ◽  
Robert T. C. Brownlee ◽  
Robert P. Metzger

The conformation of virginiamycin M1 (VM1) in chloroform, determined by high-resolution NMR experiments, differs significantly from that of the X-ray crystal structure of VM1 bound to the 50S ribosome and to the active site of a streptogramin acetyltransferase enzyme. This implies that the binding process to these entities causes a major change in VM1 conformation.

2008 ◽  
Vol 48 (supplement) ◽  
pp. S142
Author(s):  
Michihiro Suga ◽  
Kyoko Ito-Shinzawa ◽  
Hiroshi Aoyama ◽  
Kazumasa Muramoto ◽  
Eiki Yamashita ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1211-C1211
Author(s):  
Joseph Ng ◽  
Ronny Hughes ◽  
Michelle Morris ◽  
Leighton Coates ◽  
Matthew Blakeley ◽  
...  

Soluble inorganic pyrophosphatase (IPPase) catalyzes the hydrolysis of inorganic pyrophosphate (PPi) to form orthophosphate (Pi). The action of this enzyme shifts the overall equilibrium in favor of synthesis during a number of ATP-dependent cellular processes such as in the polymerization of nucleic acids, production of coenzymes and proteins and sulfate assimilation pathways. Two Neutron crystallographic (2.10-2.50Å) and five high-resolution X-ray (0.99Å-1.92Å) structures of the archaeal IPPase from Thermococcus thioreducens have been determined under both cryo and room temperatures. The structures determined include the recombinant IPPase bound to Mg+2, Ca+2, Br-, SO2-2 or PO4-2 involving those with non-hydrolyzed and hydrolyzed pyrophosphate complexes. All the crystallographic structures provide snapshots of the active site corresponding to different stages of the hydrolysis of inorganic pyrophosphate. As a result, a structure-based model of IPPase catalysis is devised showing the enzyme's low-energy conformations, hydration states, movements and nucleophile generation within the active site.


Author(s):  
Taichi Mizobuchi ◽  
Risako Nonaka ◽  
Motoki Yoshimura ◽  
Katsumasa Abe ◽  
Shouji Takahashi ◽  
...  

Aspartate racemase (AspR) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that is responsible for D-aspartate biosynthesis in vivo. To the best of our knowledge, this is the first study to report an X-ray crystal structure of a PLP-dependent AspR, which was resolved at 1.90 Å resolution. The AspR derived from the bivalve mollusc Scapharca broughtonii (SbAspR) is a type II PLP-dependent enzyme that is similar to serine racemase (SR) in that SbAspR catalyzes both racemization and dehydration. Structural comparison of SbAspR and SR shows a similar arrangement of the active-site residues and nucleotide-binding site, but a different orientation of the metal-binding site. Superposition of the structures of SbAspR and of rat SR bound to the inhibitor malonate reveals that Arg140 recognizes the β-carboxyl group of the substrate aspartate in SbAspR. It is hypothesized that the aromatic proline interaction between the domains, which favours the closed form of SbAspR, influences the arrangement of Arg140 at the active site.


ChemInform ◽  
2001 ◽  
Vol 32 (6) ◽  
pp. no-no
Author(s):  
Anna Trynda ◽  
Janusz Madaj ◽  
Antoni Konitz ◽  
Andrzej Wisniewski

2019 ◽  
Vol 7 (18) ◽  
pp. 5497-5505
Author(s):  
Ievgen V. Odynets ◽  
Sergiy Khainakov ◽  
Santiago Garcia-Granda ◽  
Roman Gumeniuk ◽  
Matthias Zschornak ◽  
...  

The crystal lattice of piezoelectric semiconductor Sr2Nb2V2O11 adopts Cc ordering due to Γ2− mode distortion.


1988 ◽  
Vol 3 (3) ◽  
pp. 563-569 ◽  
Author(s):  
B. H. Toby ◽  
M. M. Eddy ◽  
C. A. Fyfe ◽  
G. T. Kokotailo ◽  
H. Strobl ◽  
...  

High-resolution nuclear magnetic resonance (NMR) spectra and synchrotron x-ray powder diffraction data have been obtained from a well-crystallized highly dealuminated sample of the zeolite ZSM-11. The Rietveld profile technique has been applied to the synchrotron data to give the first detailed refinement of the idealized structure derived ten years ago by distance least-squares modeling methods [G. T. Kokotailo, P. Chu, S. L. Lawton, and W. M. Meier, Nature 275, 119 (1978)], which involves 54 variable atomic positional parameters. The structure is tetragonal (a = 20.065 Å, c = 13.408 Å at 25 °C) and consistent with the previously reported tetragonal space group I \overline 4 m2, but the NMR spectra indicate local deviations from this symmetry that disappear at 100 °C.


Sign in / Sign up

Export Citation Format

Share Document