scholarly journals Discovery and Validation of a Series of Aryl Sulfonamides as Selective Inhibitors of Tissue-Nonspecific Alkaline Phosphatase (TNAP)

2009 ◽  
Vol 52 (21) ◽  
pp. 6919-6925 ◽  
Author(s):  
Russell Dahl ◽  
Eduard A. Sergienko ◽  
Ying Su ◽  
Yalda S. Mostofi ◽  
Li Yang ◽  
...  
2019 ◽  
Vol 16 (3) ◽  
pp. 256-272
Author(s):  
Uzma Salar ◽  
Khalid Mohammed Khan ◽  
Syeda Abida Ejaz ◽  
Abdul Hameed ◽  
Mariya al-Rashida ◽  
...  

Background: Alkaline Phosphatase (AP) is a physiologically important metalloenzyme that belongs to a large family of ectonucleotidase enzymes. Over-expression of tissue non-specific alkaline phosphatase has been linked with ectopic calcification including vascular and aortic calcification. In Vascular Smooth Muscles Cells (VSMCs), the high level of Reactive Oxygen Species (ROS) resulted in the up-regulation of TNAP. Accordingly, there is a need to identify highly potent and selective inhibitors of APs for treatment of disorders related to hyper activity of APs. </P><P> Methods: Herein, a series of coumarinyl alkyl/aryl sulfonates (1-40) with known Reactive Oxygen Species (ROS) inhibition activity, was evaluated for alkaline phosphatase inhibition against human Tissue Non-specific Alkaline Phosphatase (hTNAP) and Intestinal Alkaline Phosphatase (hIAP). </P><P> Results: With the exception of only two compounds, all other compounds in the series exhibited excellent AP inhibition. For hIAP and hTNAP inhibition, IC50 values were observed in the range 0.62-23.5 &#181;M, and 0.51-21.5 &#181;M, respectively. Levamisole (IC50 = 20.21 &#177; 1.9 &#181;M) and Lphenylalanine (IC50 = 100.1 &#177; 3.15 &#181;M) were used as standards for hIAP and hTNAP inhibitory activities, respectively. 4-Substituted coumarinyl sulfonate derivative 23 (IC50 = 0.62 &#177; 0.02 &#181;M) was found to be the most potent hIAP inhibitor. Another 4-substituted coumarinyl sulfonate derivative 16 (IC50 = 0.51 &#177; 0.03 &#181;M) was found to be the most active hTNAP inhibitor. Some of the compounds were also found to be highly selective inhibitors of APs. Detailed Structure-Activity Relationship (SAR) and Structure-Selectivity Relationship (SSR) analysis were carried out to identify structural elements necessary for efficient and selective AP inhibition. Molecular modeling and docking studies were carried out to rationalize the most probable binding site interactions of the inhibitors with the AP enzymes. In order to evaluate drug-likeness of compounds, in silico ADMETox evaluation was carried out, most of the compounds were found to have favorable ADME profiles with good predicted oral bioavailability. X-ray crystal structures of compounds 38 and 39 were also determined. </P><P> Conclusion: Compounds from this series may serve as lead candidates for future research in order to design even more potent, and selective inhibitors of APs.


2012 ◽  
Vol 287 (44) ◽  
pp. 37185-37194 ◽  
Author(s):  
Bernard P. Arulanandam ◽  
Senthilnath Lakshmana Chetty ◽  
Jieh-Juen Yu ◽  
Sean Leonard ◽  
Karl Klose ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A187-A188
Author(s):  
Nirmal Nair

Abstract Background: Hypophosphatasia is a rare multisystem disease caused by mutations in genes encoding tissue nonspecific alkaline phosphatase, a key player in promoting bone mineralization1. Here we present a case of hypophosphatasia in a patient with history of recurrent fractures and dental caries since childhood. Case Report: Patient is a 52-year-old woman with history of multiple fractures who initially presented for follow up of osteoporosis following an atraumatic ankle fracture. Further questioning revealed a history of 16 atraumatic fractures since the age of 4, involving ankles, toes, and fingers. Several adult teeth had never developed requiring braces to fill in gaps at age 13, dental caries and tooth fractures involving the majority of her adult teeth. DEXA scan in 2019 revealed T score of -2.4 in the left femoral neck. Suspicion for hypophosphatasia in February 2019 following an ankle fracture and patient’s prior history prompted further workup, revealing low serum alkaline phosphatase levels of 29 and 32 (bone fraction 62 percent, liver fraction 38 percent), and Vitamin B6 levels elevated to 66.2. Remainder of workup, with Vitamin D, PTH, Magnesium, and Calcium was normal. A childhood history of multiple atraumatic fractures, various dental issues, with elevated Vitamin B6 and low serum alkaline phosphatase suggested Hypophosphatasia. As bisphosphonates are contraindicated in these patients due to their potential to reduce ALP, teriparatide was initiated. Discussion: Hypophosphatasia involves mutations in tissue nonspecific alkaline phosphatase, a key player in bone mineralization. In normal individuals, this enzyme dephosphorylates inorganic pyrophosphate (PPi), which otherwise inhibits bone mineralization. The mutated TNSALP leads to accumulation of PPi, and thereby unmineralized osteoid.1 Although individual presentations can vary, developmental abnormalities, such as delayed growth, early loss of primary or secondary teeth, or history of multiple fractures are characteristic. Due to the rarity of the disease, and its potential to be confused for more common bone and rheumatologic diseases, diagnosis is often delayed1. Patients in whom suspicion for hypophosphatasia is present, should undergo further testing with bone specific Alkaline phosphatase and Vitamin B6 which would be low and elevated, respectively and may be candidates for enzyme replacement therapy with bone-targeting recombinant alkaline phosphatase1. Traditional treatments such as bisphosphonates potentially decrease ALP and worsen disease, making accurate diagnosis all the more crucial. References1 Bishop N. Clinical management of hypophosphatasia. Clin Cases Miner Bone Metab. 2015;12(2):170–173.


2001 ◽  
Vol 18 (1) ◽  
pp. 83-84 ◽  
Author(s):  
A. Taillandier ◽  
A.S. Lia-Baldini ◽  
M. Mouchard ◽  
B. Robin ◽  
F. Muller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document