selective inhibitors
Recently Published Documents


TOTAL DOCUMENTS

2378
(FIVE YEARS 312)

H-INDEX

96
(FIVE YEARS 10)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 480
Author(s):  
Ziad Omran

Aldehyde dehydrogenase-1a1 (ALDH1a1), the enzyme responsible for the oxidation of retinal into retinoic acid, represents a key therapeutic target for the treatment of debilitating disorders such as cancer, obesity, and inflammation. Drugs that can inhibit ALDH1a1 include disulfiram, an FDA-approved drug to treat chronic alcoholism. Disulfiram, by carbamylation of the catalytic cysteines, irreversibly inhibits ALDH1a1 and ALDH2. The latter is the isozyme responsible for important physiological processes such as the second stage of alcohol metabolism. Given the fact that ALDH1a1 has a larger substrate tunnel than that in ALDH2, replacing disulfiram ethyl groups with larger motifs will yield selective ALDH1a1 inhibitors. We report herein the synthesis of new inhibitors of ALDH1a1 where (hetero)aromatic rings were introduced into the structure of disulfiram. Most of the developed compounds retained the anti-ALDH1a1 activity of disulfiram; however, they were completely devoid of inhibitory activity against ALDH2.


2022 ◽  
Vol 37 (1) ◽  
pp. 531-541
Author(s):  
Wagdy M. Eldehna ◽  
Mohammed S. Taghour ◽  
Tarfah Al-Warhi ◽  
Alessio Nocentini ◽  
Mostafa M. Elbadawi ◽  
...  

2022 ◽  
Author(s):  
Xuan Yang ◽  
Rebekah J Dickmander ◽  
Armin Bayati ◽  
Sharon A Taft-Benz ◽  
Jeffrey L Smith ◽  
...  

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine β-coronaviruses (β-CoV). The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in β-CoV replication. Spike protein uptake was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for development of new broad spectrum anti-β-CoV drugs.


2021 ◽  
Vol 37 (1) ◽  
pp. 168-177
Author(s):  
Alma Fuentes-Aguilar ◽  
Penélope Merino-Montiel ◽  
Sara Montiel-Smith ◽  
Socorro Meza-Reyes ◽  
José Luis Vega-Báez ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Melanie Radloff ◽  
Isam Elamri ◽  
Tamara N. Grund ◽  
Luca F. Witte ◽  
Katharina F. Hohmann ◽  
...  

AbstractCytochrome bd-type oxidases play a crucial role for survival of pathogenic bacteria during infection and proliferation. This role and the fact that there are no homologues in the mitochondrial respiratory chain qualify cytochrome bd as a potential antimicrobial target. However, few bd oxidase selective inhibitors have been described so far. In this report, inhibitory effects of Aurachin C (AurC-type) and new Aurachin D (AurD-type) derivatives on oxygen reductase activity of isolated terminal bd-I, bd-II and bo3 oxidases from Escherichia coli were potentiometrically measured using a Clark-type electrode. We synthesized long- (C10, decyl or longer) and short-chain (C4, butyl to C8, octyl) AurD-type compounds and tested this set of molecules towards their selectivity and potency. We confirmed strong inhibition of all three terminal oxidases for AurC-type compounds, whereas the 4(1H)-quinolone scaffold of AurD-type compounds mainly inhibits bd-type oxidases. We assessed a direct effect of chain length on inhibition activity with highest potency and selectivity observed for heptyl AurD-type derivatives. While Aurachin C and Aurachin D are widely considered as selective inhibitors for terminal oxidases, their structure–activity relationship is incompletely understood. This work fills this gap and illustrates how structural differences of Aurachin derivatives determine inhibitory potency and selectivity for bd-type oxidases of E. coli.


2021 ◽  
pp. 112-121
Author(s):  
Xiao-Dong Li1 ◽  
Hong-Hong Ma ◽  
Jun-Qing Gao ◽  
Yi-Shu Zhao ◽  
Xing-Kai Qian ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7267
Author(s):  
Kieran F. Scott ◽  
Timothy J. Mann ◽  
Shadma Fatima ◽  
Mila Sajinovic ◽  
Anshuli Razdan ◽  
...  

Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.


2021 ◽  
Vol 22 (23) ◽  
pp. 12813
Author(s):  
Biqin Zhang ◽  
Cheukyau Luk ◽  
Joyce Valadares ◽  
Christos Aronis ◽  
Lazaros C. Foukas

Attribution of specific roles to the two ubiquitously expressed PI 3-kinase (PI3K) isoforms p110α and p110β in biological functions they have been implicated, such as in insulin signalling, has been challenging. While p110α has been demonstrated to be the principal isoform activated downstream of the insulin receptor, several studies have provided evidence for a role of p110β. Here we have used isoform-selective inhibitors to estimate the relative contribution of each of these isoforms in insulin signalling in adipocytes, which are a cell type with essential roles in regulation of metabolism at the systemic level. Consistent with previous genetic and pharmacological studies, we found that p110α is the principal isoform activated downstream of the insulin receptor under physiological conditions. p110α interaction with Ras enhanced the strength of p110α activation by insulin. However, this interaction did not account for the selectivity for p110α over p110β in insulin signalling. We also demonstrate that p110α is the principal isoform activated downstream of the β-adrenergic receptor (β-AR), another important signalling pathway in metabolic regulation, through a mechanism involving activation of the cAMP effector molecule EPAC1. This study offers further insights in the role of PI3K isoforms in the regulation of energy metabolism with implications for the therapeutic application of selective inhibitors of these isoforms.


Sign in / Sign up

Export Citation Format

Share Document