Synthetic studies on phosphorylating reagent. II. 2-(N,N-Dialkylamino)-4-nitrophenyl phosphate and its use in the synthesis of phosphate esters

1975 ◽  
Vol 40 (16) ◽  
pp. 2310-2313 ◽  
Author(s):  
Yoshihiko Taguchi ◽  
Yoshitaka Mushika
1998 ◽  
Vol 27 (7) ◽  
pp. 649-650 ◽  
Author(s):  
Hana Kotoucová ◽  
Jirí Mazac ◽  
Radek Cibulka ◽  
František Hampl ◽  
František Liška

1984 ◽  
Vol 223 (2) ◽  
pp. 323-328 ◽  
Author(s):  
J Van Rinsum ◽  
W Van Dijk ◽  
G J Hooghwinkel ◽  
W Ferwerda

The activities of N-acetylneuraminate 9-phosphate synthase and N-acetylneuraminate 9-phosphatase, the two enzymes involved in the final steps of the biosynthetic pathway of N-acetylneuraminic acid, were measured with the substrates N-acetyl[14C]mannosamine 6-phosphate and N-acetyl[14C]neuraminic acid 9-phosphate respectively. Subcellular localization studies in rat liver indicated that both enzymes are localized in the cytosolic fraction after homogenization in sucrose medium. To test the possibility of misinterpretation due to the hydrolysis of N-acetylneuraminic acid 9-phosphate by non-specific phosphatases, the hydrolysis of various phosphate esters by the cytosolic fraction was tested. Only p-nitrophenyl phosphate was hydrolysed; however, competition studies with N-acetylneuraminic acid 9-phosphate and p-nitrophenyl phosphate indicated that two different enzymes were involved and that no competition existed between the two substrates. In various other rat tissues N-acetylneuraminate-9-phosphate synthase and N-acetylneuraminate 9-phosphatase activities were detected, suggesting that N-acetylmannosamine 6-phosphate is a general precursor for N-acetylneuraminic acid biosynthesis in all the tissues studied.


Parasitology ◽  
1979 ◽  
Vol 79 (3) ◽  
pp. 417-423 ◽  
Author(s):  
Jun Maki ◽  
Toshio Yanagisawa

SUMMARYIntact Angiostrongylus cantonensis is able to hydrolyse glucose-phosphate esters, mononucleotides and p-nitrophenyl phosphate as well as β-glycerophosphate in vitro. Reciprocal inhibition studies suggest that the hydrolysis of such substrates is due to a non-specific phosphomonoesterase. Molybdate ions, which exert no effect on either the uptake of glucose or the production of lactate, inhibit the hydrolysis of glucose-1- phosphate in the external medium and simultaneously lower the production of lactate by the intact worms in vitro.


Sign in / Sign up

Export Citation Format

Share Document