Dioxolenium ion trapping in the hydrolysis of cyclic ortho esters: the rate-determining step

1979 ◽  
Vol 44 (4) ◽  
pp. 619-622 ◽  
Author(s):  
Y. Chiang ◽  
A. J. Kresge ◽  
C. I. Young



1984 ◽  
Vol 15 (7) ◽  
Author(s):  
Y. CHIANG ◽  
A. J. KRESGE ◽  
M. O. LAHTI ◽  
D. P. WEEKS


1983 ◽  
Vol 105 (23) ◽  
pp. 6852-6855 ◽  
Author(s):  
Y. Chiang ◽  
A. J. Kresge ◽  
M. O. Lahti ◽  
D. P. Weeks


1984 ◽  
Vol 62 (8) ◽  
pp. 1608-1612
Author(s):  
Robert A. McClelland ◽  
N. Esther Seaman

A kinetic study is reported of the hydrolysis of 2-methoxy-2-phenyltetrahydrofuran and 2-ethoxy-2-phenyltetrahydrofuran. At pH > 6 the rate-determining step involves H+-catalyzed formation of the oxocarbocation, this reaction occurring with cleavage of the exocyclic alkoxy group to produce a cyclic cation. Between pH 5 and pH 6 a change-over occurs and at pH < 5, the rate-determining step in product formation is breakdown of the cyclic hemiketal intermediate, 2-hydroxy-2-phenyltetrahydrofuran. The changeover occurs because the H+-catalyzed breakdown of this intermediate is a slower process than the H+-catalyzed oxocarbocation-forming step. Hydroxide ion catalysis makes the hemiketal decomposition faster at higher pH. Analogous cyclic ortho esters (2-alkoxy-1,3-dioxolanes) show this same change in rate-determining step between high pH and low pH, while acyclic acetals, ketals, and ortho esters generally have the oxocarbocation-forming stage rate determining at all acidities. It is concluded that the structural features inherent in the cyclic systems are responsible for the difference. In particular, the oxocarbocation-forming stage involves exocyclic bond cleavage, giving it an entropic advantage over the hemiketal or hemiorthoester breakdown which is endocyclic.



1984 ◽  
Vol 62 (6) ◽  
pp. 1074-1080 ◽  
Author(s):  
Robert A. McClelland ◽  
Patrick W. K. Lam

A detailed kinetic study of the hydrolysis of a series of 3-aryl-2,4,10-trioxaadamantanes is reported. These ortho esters equilibrate with the ring-opened dialkoxycarbocation, in a very rapid process which could be studied using temperature-jump spectroscopy for aryl = 2,4-dimethylphenyl. Relaxation rate constants are of the order of 104 s−1; these could be analyzed to provide the rate constants for both the ring opening and the ring closing. Product formation from this equilibrating mixture is much slower. In acid solutions (0.01 M H+ −50% H2SO4), first-order rate constants for product formation initially increase with increasing acidity, but a maximum is reached at 20–35% H2SO4 and the rate then falls. This behavior is explained by a counterbalancing of two factors. Increasing acidity increases the amount of the dialkoxycarbocation in the initial equilibrium, but, outside the pH region, it decreases the rate of hydrolysis of this cation through a medium effect. Rate constants over a range of pH have been measured for two trioxaadamantanes and for the cation DEt+ derived by treatment of the ortho ester with triethyloxonium tetraafluoroborate. The latter models the cation formed in the ortho ester hydrolysis but it cannot ring close. Rate–pH profiles obtained in these systems are more complex than expected on the basis of rate-determining cation hydration. An interpretation is proposed with a change in rate-determining step between high pH and low pH. Cation hydration is rate determining at high pH but at low pH hemiorthoester decomposition becomes rate determining. Under these conditions the hemiorthoester equilibrates with both the dialkoxycarbocation and with the trioxaadamantane. The change in rate-determining step occurs because acid-catalyzed reversion of the hemiorthoester to dialkoxycarbocation is a faster process than acid-catalyzed hemiorthoester decomposition. This makes the latter rate-determining in acid solutions. Additional pathways available to the decomposition, however, make it the faster process at higher pH. A kinetic analysis furnishes all of the rate and equilibrium constants for the system, and provides support for the mechanistic interpretation. A comparison of these numbers with those obtained for the three stages in the hydrolysis of a simple monocyclic ortho ester underlines the novelty of the trioxaadamantane system.



Author(s):  
Ik-Hwan Um ◽  
Seungjae Kim

Second-order rate constants (kN) for reactions of p-nitrophenyl acetate (1) and S-p-nitrophenyl thioacetate (2) with OH‒ have been measured spectrophotometrically in DMSO-H2O mixtures of varying compositions at 25.0 ± 0.1 oC. The kN value increases from 11.6 to 32,800 M‒1s‒1 for the reactions of 1 and from 5.90 to 190,000 M‒1s‒1 for those of 2 as the reaction medium changes from H2O to 80 mol % DMSO, indicating that the effect of medium on reactivity is more remarkable for the reactions of 2 than for those of 1. Although 2 possesses a better leaving group than 1, the former is less reactive than the latter by a factor of 2 in H2O. This implies that expulsion of the leaving group is not advanced in the rate-determining transition state (TS), i.e., the reactions of 1 and 2 with OH‒ proceed through a stepwise mechanism, in which expulsion of the leaving group from the addition intermediate occurs after the rate-determining step (RDS). Addition of DMSO to H2O would destabilize OH‒ through electronic repulsion between the anion and the negative-dipole end in DMSO. However, destabilization of OH‒ in the ground state (GS) is not solely responsible for the remarkably enhanced reactivity upon addition of DMSO to the medium. The effect of medium on reactivity has been dissected into the GS and TS contributions through combination of the kinetic data with the transfer enthalpies (ΔΔHtr) from H2O to DMSO-H2O mixtures for OH‒ ion.







1980 ◽  
Vol 58 (2) ◽  
pp. 124-129 ◽  
Author(s):  
Y. Chiang ◽  
W. K. Chwang ◽  
A. J. Kresge ◽  
S. Szilagyi

Rates of hydrolysis of 1-ethoxy-3,3,5,5-tetramethylcyclopentene and 1-methoxy-2,3,3,5,5-pentamethylcyclopentene measured in mineral acid and formic and acetic acid buffer solutions show general acid catalysis and give large kinetic isotope effects in the normal direction (kH/kD > 1). This indicates that these reactions proceed by the conventional mechanism for vinyl ether hydrolysis in which proton transfer from the catalyzing acid to the substrate is rate-determining, and that the I-strain in these substrates is insufficiently great to shift the reaction mechanism to rapidly reversible substrate protonation followed by rate-determining hydration of the ensuing cationic intermediate.



Sign in / Sign up

Export Citation Format

Share Document