Unnatural Amino Acid Mutagenesis of Green Fluorescent Protein

2003 ◽  
Vol 68 (1) ◽  
pp. 174-176 ◽  
Author(s):  
Lei Wang ◽  
Jianming Xie ◽  
Ashok A. Deniz ◽  
Peter G. Schultz
Author(s):  
Nicole Maurici ◽  
Nicole Savidge ◽  
Byung Uk Lee ◽  
Scott H. Brewer ◽  
Christine M. Phillips-Piro

The X-ray crystal structures of two superfolder green fluorescent protein (sfGFP) constructs containing a genetically incorporated spectroscopic reporter unnatural amino acid, 4-nitro-L-phenylalanine (pNO2F), at two unique sites in the protein have been determined. Amber codon-suppression methodology was used to site-specifically incorporate pNO2F at a solvent-accessible (Asp133) and a partially buried (Asn149) site in sfGFP. The Asp133pNO2F sfGFP construct crystallized with two molecules per asymmetric unit in space group P3221 and the crystal structure was refined to 2.05 Å resolution. Crystals of Asn149pNO2F sfGFP contained one molecule of sfGFP per asymmetric unit in space group P4122 and the structure was refined to 1.60 Å resolution. The alignment of Asp133pNO2F or Asn149pNO2F sfGFP with wild-type sfGFP resulted in small root-mean-square deviations, illustrating that these residues do not significantly alter the protein structure and supporting the use of pNO2F as an effective spectroscopic reporter of local protein structure and dynamics.


Author(s):  
Gregory M. Olenginski ◽  
Juliana Piacentini ◽  
Darcy R. Harris ◽  
Nicolette A. Runko ◽  
Brianna M. Papoutsis ◽  
...  

The spectrophotometric properties of the green fluorescent protein (GFP) result from the post-translationally cyclized chromophore composed of three amino acids including a tyrosine at the center of the β-barrel protein. Altering the amino acids in the chromophore or the nearby region has resulted in numerous GFP variants with differing photophysical properties. To further examine the effect of small atomic changes in the chromophore on the structure and photophysical properties of GFP, the hydroxyl group of the chromophore tyrosine was replaced with a nitro or a cyano group. The structures and spectrophotometric properties of these superfolder GFP (sfGFP) variants with the unnatural amino acids (UAAs) 4-nitro-L-phenylalanine or 4-cyano-L-phenylalanine were explored. Notably, the characteristic 487 nm absorbance band of wild-type (wt) sfGFP is absent in both unnatural amino-acid-containing protein constructs (Tyr66pNO2Phe-sfGFP and Tyr66pCNPhe-sfGFP). Consequently, neither Tyr66pNO2Phe-sfGFP nor Tyr66pCNPhe-sfGFP exhibited the characteristic emission of wt sfGFP centered at 511 nm when excited at 487 nm. Tyr66pNO2Phe-sfGFP appeared orange due to an absorbance band centered at 406 nm that was not present in wt sfGFP, while Tyr66pCNPhe-sfGFP appeared colorless with an absorbance band centered at 365 nm. Mass spectrometry and X-ray crystallography confirmed the presence of a fully formed chromophore and no significant structural changes in either of these UAA-containing protein constructs, signaling that the change in the observed photophysical properties of the proteins is the result of the presence of the UAA in the chromophore.


2020 ◽  
Vol 118 (3) ◽  
pp. 39a
Author(s):  
Brianna M. Papoutsis ◽  
ByungUk Lee ◽  
Nathan Wong ◽  
Paul Nerenberg ◽  
Scott H. Brewer ◽  
...  

2015 ◽  
Vol 108 (2) ◽  
pp. 511a
Author(s):  
Nicole Maurici ◽  
Andrew Dippel ◽  
Melanie Liskov ◽  
Scott Brewer ◽  
Christine Phillips-Piro

Sign in / Sign up

Export Citation Format

Share Document