unnatural amino acid
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 92)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Pengchao Wang ◽  
Guangming Zhang ◽  
Zeling Xu ◽  
Zhe Chen ◽  
Xiaohong Liu ◽  
...  

Bacteria adapt to the constantly changing environments largely by transcriptional regulation through the activities of various transcription factors (TFs). However, techniques that monitor the in situ TF-promoter interactions in living bacteria are lacking. Herein, we developed a whole-cell TF-promoter binding assay based on the intermolecular Förster resonance energy transfer (FRET) between a fluorescent unnatural amino acid CouA which is genetically encoded into defined sites in TFs and the live cell fluorescent nucleic acid stain SYTO 9. We show that this new FRET pair monitors the intricate TF-promoter interactions elicited by various types of signal transduction systems with specificity and sensitivity. Furthermore, the assay is applicable to identify novel modulators of the regulatory systems of interest and monitor TF activities in bacteria colonized in C. elegans. In conclusion, we established a tractable and sensitive TF-promoter binding assay in living bacteria which not only complements currently available approaches for DNA-protein interactions but also provides novel opportunities for functional annotation of bacterial signal transduction systems and studies of the bacteria-host interface.


2021 ◽  
Author(s):  
Zhetao Zheng ◽  
Yu Wang ◽  
Xuesheng Wu ◽  
Haoran Zhang ◽  
Hongmin Chen ◽  
...  

Ribonucleic acid (RNA) viruses pose heavy burdens on public-health systems. Synthetic biology holds great potential for artificially controlling their replication, a strategy that could be used to attenuate infectious viruses but is still in the exploratory stage. Herein, we used the genetic-code expansion technique to convert Enterovirus 71 (EV71), a model of RNA virus, into a controllable EV71 strain carrying the unnatural amino acid (UAA) Nε-2-azidoethyloxycarbonyl-L-lysine (NAEK), which we termed an EV71-NAEK virus. EV71-NAEK could recapitulate an authentic NAEK time- and dose-dependent infection in vitro and in vivo, which could serve as a novel method to manipulate virulent viruses in conventional laboratories. We further validated the prophylactic effect of EV71-NAEK in two mouse models. In susceptible parent mice, vaccination with EV71-NAEK elicited a strong immune response and potentially protected their neonatal offspring from lethal challenge similar to that of commercial vaccines. Meanwhile, in transgenic mice harboring a PylRS-tRNAPyl CUA pair, substantial elements of genetic-code expansion technology, EV71-NAEK evoked an adjustable neutralizing-antibody response in a strictly external NAEK dose-dependent manner. These findings suggested that EV71-NAEK could be the basis of a feasible immunization program for populations with different levels of immunity. Moreover, we expanded the strategy to generate controllable coxsackieviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for conceptual verification. In combination, these results could underlie a competent strategy for attenuating viruses and priming the immune system via artificial control, which might be a promising direction for the development of amenable vaccine candidates and be broadly applied to other RNA viruses.


2021 ◽  
Author(s):  
Xuesheng Wu ◽  
Zhetao Zheng ◽  
Hongmin Chen ◽  
Haishuang Lin ◽  
Yuelin Yang ◽  
...  

AbstractThe frequent emergence of drug resistance during the treatment of influenza A virus (IAV) infections highlights a need for effective antiviral countermeasures. Here, we present an antiviral method that utilizes unnatural amino acid-engineered drug-resistant (UAA-DR) virus. The engineered virus is generated through genetic code expansion to combat emerging drug-resistant viruses. The UAA-DR virus has unnatural amino acids incorporated into its drug-resistant protein and its polymerase complex for replication control. The engineered virus can undergo genomic segment reassortment with normal virus and produce sterilized progenies due to artificial amber codons in the viral genome. We validate in vitro that UAA-DR can provide a broad-spectrum antiviral strategy for several H1N1 strains, different DR-IAV strains, multidrug-resistant (MDR) strains, and even antigenically distant influenza strains (e.g., H3N2). Moreover, a minimum dose of neuraminidase (NA) inhibitors for influenza virus can further enhance the sterilizing effect when combating inhibitor-resistant strains, partly due to the promoted superinfection of unnatural amino acid-modified virus in cellular and animal models. We also exploited the engineered virus to achieve adjustable efficacy after external UAA administration, for mitigating DR virus infection on transgenic mice harboring the pair, and to have substantial elements of the genetic code expansion technology, which further demonstrated the safety and feasibility of the strategy. We anticipate that the use of the UAA-engineered DR virion, which is a novel antiviral agent, could be extended to combat emerging drug-resistant influenza virus and other segmented RNA viruses.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7321
Author(s):  
Sirine Jaber ◽  
Veronica Nemska ◽  
Ivan Iliev ◽  
Elena Ivanova ◽  
Tsvetelina Foteva ◽  
...  

(1) Background: Peptides are good candidates for anticancer drugs due to their natural existence in the body and lack of secondary effects. (KLAKLAK)2 is an antimicrobial peptide that also shows good anticancer properties. (2) Methods: The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of target molecules, analogs of (KLAKLAK)2-NH2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. For determination of antimicrobial activity, the disc-diffusion method was used. Hydrolytic stability at three pH values, which mimic the physiological pH in the body, was investigated by means of the HPLC technique. (3) Results: A good selective index against MCF-7 tumor cell lines, combined with good cytotoxicity and antiproliferative properties, was revealed for conjugates NphtG-(KLAKLAK)2-NH2 and Caf-(KLAKLAK)2-NH2. The same compounds showed very good antifungal properties and complete hydrolytic stability for 72 h. The compound Caf-(KLβ-AKLβ-AK)2-NH2 containing β-Ala in its structures exhibited good antimicrobial activity against Escherichia coli K12 407 and Bacillus subtilis 3562, in combination with very good antiproliferative and cytotoxic properties, as well as hydrolytic stability. (4) Conclusions: The obtained results reveal that all synthesized conjugates could be useful for medical practice as anticancer or antimicrobial agents.


2021 ◽  
Vol 22 (21) ◽  
pp. 11482
Author(s):  
Yusuke Kato

A protocol was designed for plasmid curing using a novel counter-selectable marker, named pylSZK-pylT, in Escherichia coli. The pylSZK-pylT marker consists of the archaeal pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl) with modification, and incorporates an unnatural amino acid (Uaa), Nε-benzyloxycarbonyl-l-lysine (ZK), at a sense codon in ribosomally synthesized proteins, resulting in bacterial growth inhibition or killing. Plasmid curing is performed by exerting toxicity on pylSZK-pylT located on the target plasmid, and selecting only proliferative bacteria. All tested bacteria obtained using this protocol had lost the target plasmid (64/64), suggesting that plasmid curing was successful. Next, we attempted to exchange plasmids with the identical replication origin and an antibiotic resistance gene without plasmid curing using a modified protocol, assuming substitution of plasmids complementing genomic essential genes. All randomly selected bacteria after screening had only the substitute plasmid and no target plasmid (25/25), suggesting that plasmid exchange was also accomplished. Counter-selectable markers based on PylRS-tRNApyl, such as pylSZK-pylT, may be scalable in application due to their independence from the host genotype, applicability to a wide range of species, and high tunability due to the freedom of choice of target codons and Uaa’s to be incorporated.


Author(s):  
María Gracia Retamosa ◽  
Andrea Ruiz‐Olalla ◽  
Maddalen Agirre ◽  
Abel Cózar ◽  
Tamara Bello ◽  
...  

2021 ◽  
pp. 167304
Author(s):  
Elise D. Ficaretta ◽  
Chester J.J. Wrobel ◽  
Soumya J.S. Roy ◽  
Sarah B. Erickson ◽  
James S. Italia ◽  
...  

2021 ◽  
Vol 13 (20) ◽  
pp. 1767-1794
Author(s):  
Nibedita Ghosh ◽  
Lal Mohan Kundu

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, for which blocking the early steps of extracellular misfolded amyloid-β (Aβ) aggregation is a promising therapeutic approach. However, the pathological features of AD progression include the accumulation of intracellular tau protein, membrane-catalyzed cell death and the abnormal deposition of Aβ. Here, we focus on anti-amyloid breaker peptides derived from the Aβ sequence and non-Aβ-based peptides containing both natural and modified amino acids. Critical aspects of the breaker peptides include N-methylation, conformational restriction through cyclization, incorporation of unnatural amino acid, fluorinated molecules, polymeric nanoparticles and PEGylation. This review confers a general idea of such breaker peptides with in vitro and in vivo studies, which may advance our understanding of AD pathology and develop an effective treatment strategy against AD.


Author(s):  
Yusuke Kato

A protocol was designed for plasmid curing using a novel counter-selectable marker, named pylSZK-pylT, in Escherichia coli. The pylSZK-pylT marker consists of the archaeal pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl) with modification, and incorporates an unnatural amino acid (Uaa), Nε-benzyloxycarbonyl-l-lysine (ZK), at a sense codon in ribosomally synthesized proteins, resulting in bacterial growth inhibition or killing. Plasmid curing is performed by exerting toxicity on pylSZK-pylT located on the target plasmid, and selecting only proliferative bacteria. All tested bacteria obtained using this protocol had lost the target plasmid (64/64), suggesting that plasmid curing was successful. Next, we attempted to exchange plasmids with the identical replication origin and an antibiotic resistance gene without plasmid curing using a modified protocol, assuming substitution of plasmids complementing genomic essential genes. All randomly selected bacteria after screening had only the substitute plasmid and no target plasmid (25/25), suggesting that plasmid exchange was also accomplished. Counter-selectable markers based on PylRS-tRNApyl, such as pylSZK-pylT, may be scalable in application due to their independence from the host genotype, applicability to a wide range of species, and high tunability due to the freedom of choice of target codons and Uaa’s to be incorporated.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhiwei Zhang ◽  
Yang Liu ◽  
Jing Zhao ◽  
Wenqiang Li ◽  
Ruiwen Hu ◽  
...  

Abstract Background The unnatural amino acid, L-2-aminobutyric acid (L-ABA) is an essential chiral building block for various pharmaceutical drugs, such as the antiepileptic drug levetiracetam and the antituberculosis drug ethambutol. The present study aims at obtaining variants of ω-transaminase from Ochrobactrum anthropi (OATA) with high catalytic activity to α-ketobutyric acid through protein engineering. Results Based on the docking model using α-ketobutyric acid as the ligand, 6 amino acid residues, consisting of Y20, L57, W58, G229, A230 and M419, were chosen for saturation mutagenesis. The results indicated that L57C, M419I, and A230S substitutions demonstrated the highest elevation of enzymatic activity among 114 variants. Subsequently, double substitutions combining L57C and M419I caused a further increase of the catalytic efficiency to 3.2-fold. This variant was applied for threonine deaminase/OATA coupled reaction in a 50-mL reaction system with 300 mM L-threonine as the substrate. The reaction was finished in 12 h and the conversion efficiency of L-threonine into L-ABA was 94%. The purity of L-ABA is 75%, > 99% ee. The yield of L-ABA was 1.15 g. Conclusion This study provides a basis for further engineering of ω-transaminase for producing chiral amines from keto acids substrates.


Sign in / Sign up

Export Citation Format

Share Document