amino acid mutagenesis
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 10)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
pp. 167304
Author(s):  
Elise D. Ficaretta ◽  
Chester J.J. Wrobel ◽  
Soumya J.S. Roy ◽  
Sarah B. Erickson ◽  
James S. Italia ◽  
...  

2021 ◽  
Author(s):  
Purnima Mala ◽  
Ishu Saraogi

We have studied the decoding ability of a non-standard nucleobase modified tRNA for non-natural amino acid mutagenesis. The insertion of 2, 6-diaminopurine (D) base at the 3rd position of a tRNA anticodon enabled us to evaluate the effect of an additional hydrogen bond during translation. The presence of D at the tRNA anticodon led to stabilization of the codon-anticodon interaction due to an additional H-bond between the N2-exocyclic amine of D and the C2 carbonyl group of uracil during protein translation. While decoding UAG codons using stop codon suppression methodology, the enhanced codon-anticodon interaction improved codon readthrough and synthesis of modified protein with a non-natural amino acid at multiple sites. Our findings imply that the number of hydrogen bonds at the tRNA-mRNA duplex interface is an important criterion during mRNA decoding and improves protein translation at multiple UAG stop sites. This work provides valuable inputs towards improved non-natural amino acid mutagenesis for creating functional proteins.


2021 ◽  
Author(s):  
Purnima Mala ◽  
Ishu Saraogi

We have studied the decoding ability of a non-standard nucleobase modified tRNA for non-natural amino acid mutagenesis. The insertion of 2, 6-diaminopurine (D) base at the 3rd position of a tRNA anticodon enabled us to evaluate the effect of an additional hydrogen bond during translation. The presence of D at the tRNA anticodon led to stabilization of the codon-anticodon interaction due to an additional H-bond between the N2-exocyclic amine of D and the C2 carbonyl group of uracil during protein translation. While decoding UAG codons using stop codon suppression methodology, the enhanced codon-anticodon interaction improved codon readthrough and synthesis of modified protein with a non-natural amino acid at multiple sites. Our findings imply that the number of hydrogen bonds at the tRNA-mRNA duplex interface is an important criterion during mRNA decoding and improves protein translation at multiple UAG stop sites. This work provides valuable inputs towards improved non-natural amino acid mutagenesis for creating functional proteins.


2021 ◽  
Author(s):  
Rachel C. Fleisher ◽  
Nina Michael ◽  
Ruben L Gonzalez

Over the past decade, harnessing the cellular protein synthesis machinery to incorporate non-canonical amino acids (ncAAs) into tailor-made peptides has significantly advanced many aspects of molecular science. More recently, groundbreaking progress in our ability to engineer this machinery for improved ncAA incorporation has led to significant enhancements of this powerful tool for biology and chemistry. By revealing the molecular basis for the poor or improved incorporation of ncAAs, mechanistic studies of ncAA incorporation by the protein synthesis machinery have tremendous potential for informing and directing such engineering efforts. In this chapter, we describe a set of complementary biochemical and single-molecule fluorescence assays that we have adapted for mechanistic studies of ncAA incorporation. Collectively, these assays provide data that can guide engineering of the protein synthesis machinery to expand the range of ncAAs that can be incorporated into peptides and increase the efficiency with which they can be incorporated, thereby enabling the full potential of ncAA mutagenesis technology to be realized.


2020 ◽  
Vol 28 (20) ◽  
pp. 115662 ◽  
Author(s):  
Claudio Zambaldo ◽  
Minseob Koh ◽  
Fariborz Nasertorabi ◽  
Gye Won Han ◽  
Abhishek Chatterjee ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kristof Karadi ◽  
Sofia M. Kapetanaki ◽  
Katalin Raics ◽  
Ildiko Pecsi ◽  
Robert Kapronczai ◽  
...  

AbstractBlue Light Using Flavin (BLUF) domains are increasingly being adopted for use in optogenetic constructs. Despite this, much remains to be resolved on the mechanism of their activation. The advent of unnatural amino acid mutagenesis opens up a new toolbox for the study of protein structural dynamics. The tryptophan analogue, 7-aza-Trp (7AW) was incorporated in the BLUF domain of the Activation of Photopigment and pucA (AppA) photoreceptor in order to investigate the functional dynamics of the crucial W104 residue during photoactivation of the protein. The 7-aza modification to Trp makes selective excitation possible using 310 nm excitation and 380 nm emission, separating the signals of interest from other Trp and Tyr residues. We used Förster energy transfer (FRET) between 7AW and the flavin to estimate the distance between Trp and flavin in both the light- and dark-adapted states in solution. Nanosecond fluorescence anisotropy decay and picosecond fluorescence lifetime measurements for the flavin revealed a rather dynamic picture for the tryptophan residue. In the dark-adapted state, the major population of W104 is pointing away from the flavin and can move freely, in contrast to previous results reported in the literature. Upon blue-light excitation, the dominant tryptophan population is reorganized, moves closer to the flavin occupying a rigidly bound state participating in the hydrogen-bond network around the flavin molecule.


2019 ◽  
Vol 116 (32) ◽  
pp. 15939-15946 ◽  
Author(s):  
Erika A. Riederer ◽  
Francis I. Valiyaveetil

Glutamate transporters harness the ionic gradients across cell membranes for the concentrative uptake of glutamate. The sodium-coupled Asp symporter, GltPh is an archaeal homolog of glutamate transporters and has been extensively used to understand the transport mechanism. A critical aspect of the transport cycle in GltPh is the coupled binding of sodium and aspartate. Previous studies have suggested a major role for hairpin-2 (HP2), which functions as the extracellular gate for the aspartate binding site, in the coupled binding of sodium and aspartate to GltPh. In this study, we develop a fluorescence assay for monitoring HP2 movement by incorporating tryptophan and the unnatural amino acid, p-cyanophenylalanine into GltPh. We use the HP2 assays to show that HP2 opening with Na+ follows an induced-fit mechanism. We also determine how residues in the substrate binding site affect the opening and closing of HP2. Our data, combined with previous studies, provide the molecular sequence of events in the coupled binding of sodium and aspartate to GltPh.


2019 ◽  
Vol 116 (27) ◽  
pp. 13358-13367 ◽  
Author(s):  
Mette H. Poulsen ◽  
Anahita Poshtiban ◽  
Viktoria Klippenstein ◽  
Valentina Ghisi ◽  
Andrew J. R. Plested

Ionotropic glutamate receptors (iGluRs) are responsible for fast synaptic transmission throughout the vertebrate nervous system. Conformational changes of the transmembrane domain (TMD) underlying ion channel activation and desensitization remain poorly understood. Here, we explored the dynamics of the TMD of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type iGluRs using genetically encoded unnatural amino acid (UAA) photocross-linkers, p-benzoyl-l-phenylalanine (BzF) and p-azido-l-phenylalanine (AzF). We introduced these UAAs at sites throughout the TMD of the GluA2 receptor and characterized the mutants in patch-clamp recordings, exposing them to glutamate and ultraviolet (UV) light. This approach revealed a range of optical effects on the activity of mutant receptors. We found evidence for an interaction between the Pre-M1 and the M4 TMD helix during desensitization. Photoactivation at F579AzF, a residue behind the selectivity filter in the M2 segment, had extraordinarily broad effects on gating and desensitization. This observation suggests coupling to other parts of the receptor and like in other tetrameric ion channels, selectivity filter gating.


2019 ◽  
Vol 16 (3) ◽  
pp. 369-384 ◽  
Author(s):  
Zhipeng A. Wang

In the past two decades, a plethora of lysine (Lys) posttranslational modifications (PTMs) has been discovered on proteins, major groups are acylation, alkylation, and ubiquitination. Although considered biologically important, functional annotation of proteins with Lys PTMs has largely fallen behind the discovery. One grand challenge of characterizing proteins with PTMs is the procurement of homogenously modified proteins. To resolve this obstacle, sophisticated methods have been developed. These include total synthesis, semisynthesis that is based on native chemical ligation, expressed protein ligation, and enzyme-catalyzed peptide ligation, and the amber-suppression based noncanonical amino acid mutagenesis technique that may need to couple with follow-up bioorthogonal chemistry. This review summarizes currently identified significant PTMs and chemical biology methods for their installation in proteins. We hope that the current review will provide helpful insights and critical perspectives to this important research frontier.


Sign in / Sign up

Export Citation Format

Share Document