Excited-State Dynamics ofall-trans-1,3,5,7-Octatetraene in Solution. Direct Observation of Internal Conversion from the S2to S1State and Relaxation Processes in the S1State

2001 ◽  
Vol 105 (16) ◽  
pp. 3973-3980 ◽  
Author(s):  
Kaoru Ohta ◽  
Yukito Naitoh ◽  
Keisuke Tominaga ◽  
Keitaro Yoshihara
1993 ◽  
Vol 32 (4) ◽  
pp. 394-399 ◽  
Author(s):  
James K. McCusker ◽  
Kevin N. Walda ◽  
Douglas Magde ◽  
David N. Hendrickson

2020 ◽  
Author(s):  
Sarah E. Krul ◽  
Sean J. Hoehn ◽  
Karl Feierabend ◽  
Carlos Crespo-Hernández

Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways.<b> </b>In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5’-monophosphate are investigated in aqueous solution using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient absorption spectra are collected under experimental conditions that eliminate the requirement to correct the data for the formation of hydrated electrons, resulting from the two-photon ionization of the solvent. The data is fitted satisfactorily using a two-component sequential kinetic model, yielding lifetimes of 210 ± 50 fs and 1.80 ± 0.02 ps, and 682 ± 40 fs and 1.4 ± 0.03 ps, for 7-deazaguanosine and guanosine 5’-monophosphate, respectively. By analyzing the results from steady-state, time-resolved, and computational calculations, the following relaxation mechanism is proposed for 7-deazaguanosine, S<sub>2</sub>(L<sub>b</sub>) ® S<sub>1</sub>(L<sub>a</sub>) ® S<sub>0</sub>, whereas a S<sub>2</sub>(L<sub>b</sub>) ® S<sub>1</sub>(L<sub>a</sub>) ® S<sub>0</sub>(hot)<sub> </sub>® S<sub>0 </sub>relaxation mechanism<sub> </sub>is proposed for guanosine 5’-monophosphate. Interestingly, longer lifetimes for both the L<sub>b</sub> ® L<sub>a</sub> and the L<sub>a</sub> ® S<sub>0</sub> internal conversion pathways are obtained for 7-deazaguanosine compare to guanosine 5’-monophosphate. Collectively, the results demonstrate that substitution of a single nitrogen for a methine (C-H) group at position seven of the guanine moiety stabilizes the <sup>1</sup>pp* L<sub>b</sub> and L<sub>a</sub> states and alters the topology of their potential energy surfaces in such a way that the population dynamics of both internal conversion pathways in 7-deazaguanosine are significantly slowed down compared to those in guanosine 5’-monophosphate.


2019 ◽  
Vol 21 (5) ◽  
pp. 2283-2294 ◽  
Author(s):  
Max D. J. Waters ◽  
Anders B. Skov ◽  
Martin A. B. Larsen ◽  
Christian M. Clausen ◽  
Peter M. Weber ◽  
...  

Symmetry effects in internal conversion are studied by means of two isomeric cyclic tertiary aliphatic amines in a velocity map imaging (VMI) experiment on the femtosecond timescale. We conclude that lessening the symmetry of the molecule leads to loss of coherence after internal conversion between Rydberg states.


2021 ◽  
Author(s):  
Sarah E. Krul ◽  
Sean J. Hoehn ◽  
Karl Feierabend ◽  
Carlos Crespo-Hernández

<p>Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways.<b> </b>In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5’-monophosphate are investigated in aqueous and in a mixture of methanol and water using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient spectra are collected using photon densities that ensure no parasitic multiphoton-induced signal from solvated electrons. The data can be fit satisfactorily using a two- or three-component kinetic model. By analyzing the results from steady-state, time-resolved, computational calculations, and the methanol-water mixture, the following general relaxation mechanism is proposed for both molecules, L<sub>b</sub> ® L<sub>a</sub> ® <sup>1</sup>ps*(ICT) ® S<sub>0</sub>, where the <sup>1</sup>ps*(ICT) stands for an intramolecular charge transfer excited singlet state with significant ps* character. In general, longer lifetimes for internal conversion are obtained for 7-deazaguanosine compared to guanosine 5’-monophosphate. Internal conversion of the <sup>1</sup>ps*(ICT) state to the ground state occurs on a similar time scale of a few picoseconds in both molecules. Collectively, the results demonstrate that substitution of a single nitrogen for a methine (C-H) group at position seven of the guanine moiety stabilizes the <sup>1</sup>pp* L<sub>b</sub> and L<sub>a</sub> states and alter the topology of their potential energy surfaces in such a way that the relaxation dynamics in 7-deazaguanosine are slowed down compared to those in guanosine 5’-monophosphate but not for the internal conversion of <sup>1</sup>ps*(ICT) state to the ground state.</p>


2021 ◽  
Author(s):  
Sarah E. Krul ◽  
Sean J. Hoehn ◽  
Karl Feierabend ◽  
Carlos Crespo-Hernández

<p>Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways.<b> </b>In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5’-monophosphate are investigated in aqueous and in a mixture of methanol and water using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient spectra are collected using photon densities that ensure no parasitic multiphoton-induced signal from solvated electrons. The data can be fit satisfactorily using a two- or three-component kinetic model. By analyzing the results from steady-state, time-resolved, computational calculations, and the methanol-water mixture, the following general relaxation mechanism is proposed for both molecules, L<sub>b</sub> ® L<sub>a</sub> ® <sup>1</sup>ps*(ICT) ® S<sub>0</sub>, where the <sup>1</sup>ps*(ICT) stands for an intramolecular charge transfer excited singlet state with significant ps* character. In general, longer lifetimes for internal conversion are obtained for 7-deazaguanosine compared to guanosine 5’-monophosphate. Internal conversion of the <sup>1</sup>ps*(ICT) state to the ground state occurs on a similar time scale of a few picoseconds in both molecules. Collectively, the results demonstrate that substitution of a single nitrogen for a methine (C-H) group at position seven of the guanine moiety stabilizes the <sup>1</sup>pp* L<sub>b</sub> and L<sub>a</sub> states and alter the topology of their potential energy surfaces in such a way that the relaxation dynamics in 7-deazaguanosine are slowed down compared to those in guanosine 5’-monophosphate but not for the internal conversion of <sup>1</sup>ps*(ICT) state to the ground state.</p>


Sign in / Sign up

Export Citation Format

Share Document