Anisotropic Molecular Polarizabilities of HCHO, CH3CHO, and CH3COCH3. Rayleigh Depolarization Ratios of HCHO and CH3CHO and First and Second Kerr Virial Coefficients of CH3COCH3

2001 ◽  
Vol 105 (17) ◽  
pp. 4365-4370 ◽  
Author(s):  
Vincent W. Couling ◽  
Brendan W. Halliburton ◽  
Roland I. Keir ◽  
Geoffrey L. D. Ritchie
2010 ◽  
Vol 75 (3) ◽  
pp. 359-369 ◽  
Author(s):  
Mariano López De Haro ◽  
Anatol Malijevský ◽  
Stanislav Labík

Various truncations for the virial series of a binary fluid mixture of additive hard spheres are used to analyze the location of the critical consolute point of this system for different size asymmetries. The effect of uncertainties in the values of the eighth virial coefficients on the resulting critical constants is assessed. It is also shown that a replacement of the exact virial coefficients in lieu of the corresponding coefficients in the virial expansion of the analytical Boublík–Mansoori–Carnahan–Starling–Leland equation of state, which still leads to an analytical equation of state, may lead to a critical consolute point in the system.


2000 ◽  
Vol 65 (9) ◽  
pp. 1464-1470 ◽  
Author(s):  
Anatol Malijevský ◽  
Tomáš Hujo

The second and third virial coefficients calculated from the Bender equation of state (BEOS) are tested against experimental virial coefficient data. It is shown that the temperature dependences of the second and third virial coefficients as predicted by the BEOS are sufficiently accurate. We conclude that experimental second virial coefficients should be used to determine independently five of twenty constants of the Bender equation. This would improve the performance of the equation in a region of low-density gas, and also suppress correlations among the BEOS constants, which is even more important. The third virial coefficients cannot be used for the same purpose because of large uncertainties in their experimental values.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 846
Author(s):  
Donya Ohadi ◽  
David S. Corti ◽  
Mark J. Uline

Modifications to the traditional Onsager theory for modeling isotropic–nematic phase transitions in hard prolate spheroidal systems are presented. Pure component systems are used to identify the need to update the Lee–Parsons resummation term. The Lee–Parsons resummation term uses the Carnahan–Starling equation of state to approximate higher-order virial coefficients beyond the second virial coefficient employed in Onsager’s original theoretical approach. As more exact ways of calculating the excluded volume of two hard prolate spheroids of a given orientation are used, the division of the excluded volume by eight, which is an empirical correction used in the original Lee–Parsons resummation term, must be replaced by six to yield a better match between the theoretical and simulation results. These modifications are also extended to binary mixtures of hard prolate spheroids using the Boublík–Mansoori–Carnahan–Starling–Leland (BMCSL) equation of state.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1035
Author(s):  
Kenneth Christian ◽  
John Yorks ◽  
Sampa Das

Recent fire seasons have featured volcanic-sized injections of smoke aerosols into the stratosphere where they persist for many months. Unfortunately, the aging and transport of these aerosols are not well understood. Using space-based lidar, the vertical and spatial propagation of these aerosols can be tracked and inferences can be made as to their size and shape. In this study, space-based CATS and CALIOP lidar were used to track the evolution of the stratospheric aerosol plumes resulting from the 2019–2020 Australian bushfire and 2017 Pacific Northwest pyrocumulonimbus events and were compared to two volcanic events: Calbuco (2015) and Puyehue (2011). The pyrocumulonimbus and volcanic aerosol plumes evolved distinctly, with pyrocumulonimbus plumes rising upwards of 10 km after injection to altitudes of 30 km or more, compared to small to modest altitude increases in the volcanic plumes. We also show that layer-integrated depolarization ratios in these large pyrocumulonimbus plumes have a strong altitude dependence with more irregularly shaped particles in the higher altitude plumes, unlike the volcanic events studied.


Sign in / Sign up

Export Citation Format

Share Document