depolarization ratios
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 22)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Nikolay G. Bulakhov ◽  
Alexander V. Konoshonkin ◽  
Ilya V. Tkachev ◽  
Dmitriy N. Timofeev ◽  
Victor A. Shishko ◽  
...  

2021 ◽  
Author(s):  
Xiaoxia Shang ◽  
Holger Baars ◽  
Iwona S. Stachlewska ◽  
Ina Mattis ◽  
Mika Komppula

Abstract. Lidar observations were analysed to characterize atmospheric pollen at four EARLINET (European Aerosol Research Lidar Network) stations (Hohenpeißenberg, Germany; Kuopio, Finland, Leipzig, Germany; and Warsaw, Poland) during the ACTRIS-COVID-19 campaign in May 2020. The re-analysis lidar data products, after the centralized and automatic data processing with the Single Calculus Chain (SCC), were used in this study, focusing on particle backscatter coefficients at 355 nm and 532 nm, and particle linear depolarization ratios (PDRs) at 532 nm. A novel method for the characterization of the pure pollen depolarization ratio was presented, based on the non-linear least square regression fitting using lidar-derived backscatter-related Ångström exponents (BAEs) and PDRs. Under the assumption that the BAE between 355 and 532 nm should be zero (± 0.5) for pure pollen, the pollen depolarization ratios were estimated: for Kuopio and Warsaw stations, the pollen depolarization ratios at 532 nm were of 0.24 (0.19–0.28) during the birch dominant pollen periods; whereas for Hohenpeiβenberg and Leipzig stations, the pollen depolarization ratios of 0.21 (0.15–0.27) and 0.20 (0.15–0.25) were observed for periods of mixture of birch and grass pollen. The method was also applied for the aerosol classification, using two case examples from the campaign periods: the different pollen types (or pollen mixtures) were identified at Warsaw station, and dust and pollen were classified at Hohenpeißenberg station.


2021 ◽  
Author(s):  
◽  
Stephanie Bohlmann ◽  

Atmospheric pollen is a well-known health threat causing allergy-related diseases. As a biogenic aerosol, pollen also affects the climate by directly absorbing and scattering solar radiation and by acting as cloud condensation or ice nuclei. A good understanding of pollen distribution and transport mechanisms is needed to evaluate the environmental and health impacts of pollen. However, pollen observations are usually performed close to ground and vertical information, which could be used to evaluate and improve pollen transport models, is widely missing. In this thesis, the applicability of lidar measurements to detect pollen in the atmosphere is investigated. For this purpose, measurements of the multiwavelength Raman polarization lidar PollyXT at the rural forest site in Vehmasmäki (Kuopio), Eastern Finland have been utilized. The depolarization ratio was identified to be the most valuable optical property for the detection of atmospheric pollen, as nonspherical pollen like pine and spruce pollen causes high depolarization ratios. However, detected depolarization ratios coincide with typical values for dusty mixtures and additional information such as backward trajectories need to be considered to ensure the absence of other depolarizing aerosols like dust. To separate pollen from background aerosol, a method to estimate the optical properties of pure pollen using lidar measurements was developed. Under the assumption that the Ångström exponent of pure pollen is zero, the depolarization ratio of pure pollen can be estimated. Depolarization ratios for birch and pine pollen at 355 and 532 nm were determined and suggested a wavelength dependence of the depolarization ratio. To further investigate this wavelength dependence, the possibility to use depolarization measurements of Halo Doppler lidars (1565 nm) was explored. In the lower troposphere, Halo Doppler lidars can provide reasonable depolarization values with comparable quality to PollyXT measurements. Finally, measurements of PollyXT and a Halo StreamLine Doppler lidar were used to determine the depolarization ratio at three wavelengths. A wavelength dependence of the particle depolarization ratio with maximum depolarization at 532 nm was found. This could be a characteristic feature of non-spherical pollen and the key to distinguish pollen from other depolarizing aerosol types.


2021 ◽  
Author(s):  
Xiaoxia Shang ◽  
Tero Mielonen ◽  
Antti Lipponen ◽  
Elina Giannakaki ◽  
Ari Leskinen ◽  
...  

Abstract. Layers of biomass burning aerosol particles were observed in the lower troposphere, at 2 to 5 km height on 4 to 6 June 2019, over Kuopio, Finland. These long-range-transported smoke particles originated from a Canadian wildfire event. The most pronounced smoke plume detected on 5 June was intensively investigated. Optical properties were retrieved from the multi-wavelength Raman polarization lidar PollyXT. Particle linear depolarization ratios of this plume were measured to be 0.08 ± 0.02 at 355 nm and 0.05 ± 0.01 at 532 nm which were slightly higher than the values given in the literature. Non-spherical shaped aged smoke particles and/or the mixing with a small amount of fine dust particles could cause the observed increase in the particle linear depolarization ratios. Lidar ratios were derived as 47 ± 5 sr at 355 nm and 71 ± 5 sr at 532 nm. A complete ceilometer data processing for a Vaisala CL51 is presented, including the water vapor correction for high latitude for the first time, from sensor provided attenuated backscatter coefficient to particle mass concentration. A combined lidar and sun-photometer approach (based on AERONET products) is applied for mass concentration estimations. Mass concentrations were estimated from both PollyXT and the ceilometer CL51 observations, which were of the order of ~ 30 µg m−3 in the morning and decreased to ~ 20 µg m−3 in the night. A difference of ~ 30% was found between PollyXT and CL51 estimated mass concentrations. The mass retrievals were discussed and compared with the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) meteorological and aerosol reanalysis. The inclusion of dust in the retrieved mass concentration slightly improved the correspondence between the observations and the MERRA-2 simulations.


2021 ◽  
Vol 21 (9) ◽  
pp. 7083-7097
Author(s):  
Stephanie Bohlmann ◽  
Xiaoxia Shang ◽  
Ville Vakkari ◽  
Elina Giannakaki ◽  
Ari Leskinen ◽  
...  

Abstract. Lidar observations during the pollen season 2019 at the European Aerosol Research Lidar Network (EARLINET) station in Kuopio, Finland, were analyzed in order to optically characterize atmospheric pollen. Pollen concentration and type information were obtained by a Hirst-type volumetric air sampler. Previous studies showed the detectability of non-spherical pollen using depolarization ratio measurements. We present lidar depolarization ratio measurements at three wavelengths of atmospheric pollen in ambient conditions. In addition to the depolarization ratio detected with the multiwavelength Raman polarization lidar PollyXT at 355 and 532 nm, depolarization measurements of a co-located Halo Doppler lidar at 1565 nm were utilized. During a 4 d period of high birch (Betula) and spruce (Picea abies) pollen concentrations, unusually high depolarization ratios were observed within the boundary layer. Detected layers were investigated regarding the share of spruce pollen to the total pollen number concentration. Daily mean linear particle depolarization ratios of the pollen layers on the day with the highest spruce pollen share are 0.10 ± 0.02, 0.38 ± 0.23 and 0.29 ± 0.10 at 355, 532 and 1565 nm, respectively, whereas on days with lower spruce pollen share, depolarization ratios are lower with less wavelength dependence. This spectral dependence of the depolarization ratios could be indicative of big, non-spherical spruce pollen. The depolarization ratio of pollen particles was investigated by applying a newly developed method and assuming a backscatter-related Ångström exponent of zero. Depolarization ratios of 0.44 and 0.16 at 532 and 355 nm for the birch and spruce pollen mixture were determined.


2021 ◽  
Author(s):  
Igor Veselovskii ◽  
Qiaoyun Hu ◽  
Philippe Goloub ◽  
Thierry Podvin ◽  
Marie Choël ◽  
...  

Abstract. Multiwavelength Mie–Raman–fluorescence lidar of Lille University with the capability to measure three aerosol backscattering, two extinction coefficients and three linear depolarization ratios together with the fluorescence backscattering at 466 nm was used to characterize aerosols during the pollen season in the north of France for the period March – June 2020. The results of observations demonstrate that the presence of pollen grains in aerosol mixture leads to an increase of the depolarization ratio. Moreover, the depolarization ratio exhibits a strong spectral dependence increasing with wavelength, which is expected for the mixture containing fine background aerosols with low depolarization and strongly depolarizing pollen grains. High depolarization ratio correlates with the enhancement of the fluorescence backscattering, corroborating the presence of pollen grains. Obtained results demonstrate that simultaneous measurements of particle depolarization and fluorescence allows to separate dust, smoke particles and aerosol mixtures containing the pollen grains.


2020 ◽  
Author(s):  
Stephanie Bohlmann ◽  
Xiaoxia Shang ◽  
Ville Vakkari ◽  
Elina Giannakaki ◽  
Ari Leskinen ◽  
...  

Abstract. Lidar observations during the pollen season 2019 at the European Aerosol Research Lidar Network (EARLINET) station in Kuopio, Finland were analyzed in order to optically characterize atmospheric pollen. Previous studies showed the detectability of non-spherical pollen using depolarization ratio measurements. We present lidar depolarization ratio measurements at three wavelengths of atmospheric pollen in ambient conditions. In addition to the depolarization ratio detected with the multiwavelength Raman polarization lidar PollyXT at 355 and 532 nm, depolarization measurements of a co-located HALO Photonics Streamline Doppler lidar at 1565 nm were utilized. During a four days period of high birch (Betula) and spruce (Picea abies) pollen concentrations, unusually high depolarization ratios were observed within the boundary layer. Detected layers were investigated regarding the share of spruce pollen to the total pollen number concentration. Daily mean particle depolarization ratios of the pollen layers on the day with the highest spruce pollen share are 0.10 ± 0.02, 0.38 ± 0.23 and 0.29 ± 0.10 at 355, 532 and 1565 nm, respectively. Whereas on days with lower spruce pollen share, depolarization ratios are lower with less wavelength dependence. This spectral dependence of the depolarization ratios could be indicative of big, non-spherical spruce pollen. The depolarization ratio of pollen particles was investigated by applying a newly developed method and assuming a backscatter-related Ångström exponent of zero. Depolarization ratios of 0.44 and 0.16 at 532 and 355 nm for the birch and spruce pollen mixture were determined.


2020 ◽  
Vol 20 (22) ◽  
pp. 13817-13834 ◽  
Author(s):  
Qiaoyun Hu ◽  
Haofei Wang ◽  
Philippe Goloub ◽  
Zhengqiang Li ◽  
Igor Veselovskii ◽  
...  

Abstract. The Taklamakan desert is an important dust source for the global atmospheric dust budget and a cause of the dust weather in East Asia. The characterization of Taklamakan dust in the source region is still very limited. To fill this gap, the DAO (dust aerosol observation) was conducted in April 2019 in Kashi, China. The Kashi site is about 150 km from the western rim of the Taklamakan desert and is strongly impacted by desert dust aerosols, especially in spring time, i.e., April and May. According to sun–sky photometer measurements, the aerosol optical depth (at 500 nm) varied in the range of 0.07–4.70, and the Ångström exponent (between 440 and 870 nm) in the range of 0.0–0.8 in April 2019. In this study, we provide the first profiling of the 2α+3β+3δ parameters of Taklamakan dust based on a multiwavelength Mie–Raman polarization lidar. For Taklamakan dust, the Ångström exponent related to the extinction coefficient (EAE, between 355 and 532 nm) is about 0.01 ± 0.30, and the lidar ratio is found to be 45 ± 7 sr (51 ± 8–56 ± 8 sr) at 532 (355) nm. The particle linear depolarization ratios (PLDRs) are about 0.28–0.32 ± 0.07 at 355 nm, 0.36 ± 0.05 at 532 nm and 0.31 ± 0.05 at 1064 nm. Both lidar ratios and depolarization ratios are higher than the typical values of Central Asian dust in the literature. The difference is probably linked to the fact that observations in the DAO campaign were collected close to the dust source; therefore, there is a large fraction of coarse-mode and giant particles (radius >20 µm) in the Taklamakan dust. Apart from dust, fine particles coming from local anthropogenic emissions and long-range transported aerosols are also non-negligible aerosol components. The signatures of pollution emerge when dust concentration decreases. The polluted dust (defined by PLDR532≤0.30 and EAE355-532≥0.20) is featured with reduced PLDRs and enhanced EAE355−532 compared to Taklamakan dust. The mean PLDRs of polluted dust generally distributed in the range of 0.20–0.30. Due to the complexity of the nature of the involved pollutants and their mixing state with dust, the lidar ratios exhibit larger variabilities compared to those of dust. The study provides the first reference of novel characteristics of Taklamakan dust measured by Mie–Raman polarization lidar. The data could contribute to complementing the dust model and improving the accuracy of climate modeling.


Author(s):  
Anatoli G. Borovoi ◽  
Zhenzhu Wang ◽  
Victor A. Shishko ◽  
Natalia V. Kustova ◽  
Alexander V. Konoshonkin ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1035
Author(s):  
Kenneth Christian ◽  
John Yorks ◽  
Sampa Das

Recent fire seasons have featured volcanic-sized injections of smoke aerosols into the stratosphere where they persist for many months. Unfortunately, the aging and transport of these aerosols are not well understood. Using space-based lidar, the vertical and spatial propagation of these aerosols can be tracked and inferences can be made as to their size and shape. In this study, space-based CATS and CALIOP lidar were used to track the evolution of the stratospheric aerosol plumes resulting from the 2019–2020 Australian bushfire and 2017 Pacific Northwest pyrocumulonimbus events and were compared to two volcanic events: Calbuco (2015) and Puyehue (2011). The pyrocumulonimbus and volcanic aerosol plumes evolved distinctly, with pyrocumulonimbus plumes rising upwards of 10 km after injection to altitudes of 30 km or more, compared to small to modest altitude increases in the volcanic plumes. We also show that layer-integrated depolarization ratios in these large pyrocumulonimbus plumes have a strong altitude dependence with more irregularly shaped particles in the higher altitude plumes, unlike the volcanic events studied.


Sign in / Sign up

Export Citation Format

Share Document