volcanic aerosol
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 38)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 21 (20) ◽  
pp. 15783-15808
Author(s):  
Kevin Ohneiser ◽  
Albert Ansmann ◽  
Alexandra Chudnovsky ◽  
Ronny Engelmann ◽  
Christoph Ritter ◽  
...  

Abstract. During the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, the German icebreaker Polarstern drifted through Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85 and 88.5∘ N. A multiwavelength polarization Raman lidar was operated on board the research vessel and continuously monitored aerosol and cloud layers up to a height of 30 km. During our mission, we expected to observe a thin residual volcanic aerosol layer in the stratosphere, originating from the Raikoke volcanic eruption in June 2019, with an aerosol optical thickness (AOT) of 0.005–0.01 at 500 nm over the North Pole area during the winter season. However, the highlight of our measurements was the detection of a persistent, 10 km deep aerosol layer in the upper troposphere and lower stratosphere (UTLS), from about 7–8 to 17–18 km height, with clear and unambiguous wildfire smoke signatures up to 12 km and an order of magnitude higher AOT of around 0.1 in the autumn of 2019. Case studies are presented to explain the specific optical fingerprints of aged wildfire smoke in detail. The pronounced aerosol layer was present throughout the winter half-year until the strong polar vortex began to collapse in late April 2020. We hypothesize that the detected smoke originated from extraordinarily intense and long-lasting wildfires in central and eastern Siberia in July and August 2019 and may have reached the tropopause layer by the self-lifting process. In this article, we summarize the main findings of our 7-month smoke observations and characterize the aerosol in terms of geometrical, optical, and microphysical properties. The UTLS AOT at 532 nm ranged from 0.05–0.12 in October–November 2019 and 0.03–0.06 during the main winter season. The Raikoke aerosol fraction was estimated to always be lower than 15 %. We assume that the volcanic aerosol was above the smoke layer (above 13 km height). As an unambiguous sign of the dominance of smoke in the main aerosol layer from 7–13 km height, the particle extinction-to-backscatter ratio (lidar ratio) at 355 nm was found to be much lower than at 532 nm, with mean values of 55 and 85 sr, respectively. The 355–532 nm Ångström exponent of around 0.65 also clearly indicated the presence of smoke aerosol. For the first time, we show a distinct view of the aerosol layering features in the High Arctic from the surface up to 30 km height during the winter half-year. Finally, we provide a vertically resolved view on the late winter and early spring conditions regarding ozone depletion, smoke occurrence, and polar stratospheric cloud formation. The latter will largely stimulate research on a potential impact of the unexpected stratospheric aerosol perturbation on the record-breaking ozone depletion in the Arctic in spring 2020.


2021 ◽  
Author(s):  
Travis Knepp ◽  
Larry Thomason ◽  
Mahesh Kovilakam ◽  
Jason Tackett ◽  
Jayanta Kar ◽  
...  

Abstract. The 2019 eruption of Raikoke was the largest volcanic eruption since 2011 and it was coincident with 2 major wildfires in the northern hemisphere. The impact of these events was manifest in the SAGE III/ISS extinction coefficient measurements. As the volcanic aerosol layers moved southward, a secondary peak emerged at an altitude higher than that which is expected for sulfuric acid aerosol. It was hypothesized that this secondary plume may contain a non-negligible amount of smoke contribution. We developed a technique to classify the composition of enhanced aerosol layers as either smoke or sulfuric acid aerosol. This method takes advantage of the different spectral properties of smoke and sulfuric acid aerosol, which is manifest in distinctly different spectral slopes in the SAGE III/ISS data. Herein we demonstrate the utility of this method using 4 case-study events (2018 Ambae eruption, 2019 Ulawun eruption, 2017 Canadian pyroCb, and 2020 Australian pyroCb) and provide corroborative data from the CALIOP instrument before applying it to the Raikoke plumes. We determined that, in the time period following the Raikoke eruption, smoke and sulfuric acid aerosol were present throughout the atmosphere and the 2 aerosol types were preferentially partitioned to higher (smoke) and lower (sulfuric acid) altitudes. Herein, we present an evaluation of the performance of this classification scheme within the context of the aforementioned case-study events followed by a brief discussion of this method's applicability to other events as well as its limitations.


Author(s):  
Tianqi Zuo ◽  
Alison D. Nugent ◽  
Gregory Thompson

AbstractIn recent decades, a significant rainfall decline over the Island of Hawai‘i has been noted, with many hypothesizing that the drying is associated with the volcanic aerosols emitted from the Kīlauea Volcano. While it is clear that volcanic emissions can create hazardous air quality for Hawaiian communities, the impacts on rainfall are less clear. Here we investigate the impact of volcanic aerosol emissions on Hawai‘i Island rainfall. Based on observed daily rainfall and SO2 emissions, it is found that days with high SO2 emissions have on average 8 mm day−1 less rainfall downstream of the Kīlauea Volcano. Sensitivity studies with varying volcanic aerosol emission sources from the Kīlauea vent locations have also been conducted by the Weather Research and Forecasting (WRF) Model in order to examine the detailed physical processes. Consistent with SO2 air quality observations, it is found that the diurnal change in aerosol number concentration is strongly dependent on the diurnal variation of local circulations. The added aerosols are lofted into the orographic convection where they modify the microphysical properties of the warm clouds by increasing the cloud droplet number concentration, decreasing the cloud droplet size, increasing cloud water content and enhancing cloud evaporation. The volcanic aerosols also delay precipitation production and modify the spatial distribution of rainfall on the downstream mountainside. The modification of precipitation on an island has far reaching consequences. For this reason, we work to quantify the sensitivity of the orographic precipitation to volcanic aerosols and move beyond hypothesized relationships towork toward understanding the underlying problem.


2021 ◽  
Author(s):  
Sarah Shallcross ◽  
Graham Mann ◽  
Anja Schmidt ◽  
Jim Haywood ◽  
Frances Beckett ◽  
...  

<p>Volcanic aerosol simulations with interactive stratospheric aerosol models mostly neglect ash particles, due to a general assumption they sediment out of the volcanic plume within the first few weeks and have limited impacts on the progression of the volcanic aerosol cloud (Niemeier et al., 2009). </p> <p>However, observations, such as ground-based and airborne lidar (Vaughan et al., 1994; Browell et al., 1993), along with impactor measurements (Pueschel et al., 1994) in the months after the Mount Pinatubo eruption suggest the base of the aerosol cloud contained ash particles coated in sulphuric acid for around 9 months after the eruption occurred.  Impactor measurements from flights following the 1963 Agung and 1982 El Chichon eruptions also show ash remained present for many months after the eruption (Mossop, 1964; Gooding et al., 1983).  <br /><br />More recently, satellite, in situ and optical particle counter measurements after the 2014 Mount Kelud eruption showed ash particles ~0.3 µm in size accounting for 20-28% of the volcanic cloud AOD 3 months following the eruption (Vernier et al., 2016; Deshler, 2016).  This evidence suggests that sub-micron ash particles may persist for longer in the atmosphere than is often assumed. </p> <p>We explore how the presence of these sub-micron ash particles affects the progression of a major tropical volcanic aerosol cloud, showing results from simulations with a new configuration of the composition-climate model UM-UKCA, adapted to co-emit fine-ash alongside SO2.   In the UM-UKCA simulations, internally mixed ash-sulphuric particles are transported within the existing coarse-insoluble mode of the GLOMAP-mode aerosol scheme. <br /><br />Size fractions of 0.1, 0.316 and 1 µm diameter ash were tested for the 1991 Mount Pinatubo eruption with an ultra-fine ash mass co-emission of 0.05 and 0.5 Tg, based on 0.1% and 1% of an assumed fine ash emission of 50Tg.  Whereas the 0.316 and 1 µm sized particles sedimented out of the stratosphere within the first 90 days after the eruption, the 0.1 µm persisted within the lower portion of volcanic cloud for ~9 months,  retaining over half its original mass (0.035 Tg) February 1992. </p> <p>We investigate model experiments with different injection heights for the co-emitted SO2 and ash, analysing the vertical profile of the ultra-fine ash compared to the sulphate aerosol, and explore the effects on the volcanic aerosol cloud in terms of its overall optical depth and vertical profile of extinction.</p> <p>The analysis demonstrates that although fine-ash is more persistent than previous modelling studies suggest, these particles have only modest impacts with the radiative heating effect the dominant pathway, with the sub-micron particles not scavenging sufficiently.  </p> <p>Future work will explore simulations with a further adapted UM-UKCA model with an additional “super-coarse” insoluble mode resolving the super-micron ash, then both components of the fine-ash resolved to test the magnitude of sulfate scavenging effect. </p>


2021 ◽  
Author(s):  
Zhihong Zhuo ◽  
Herman Fuglestvedt ◽  
Matthew Toohey ◽  
Michael J. Mills ◽  
Kirstin Krüger

<p>Major volcanic eruptions increase sulfate aerosols in the stratosphere. This causes a large-scale dimming effect with significant surface cooling and stratosphere warming. However, the climate impact differs for tropical and extratropical eruptions, and depends on the eruption season and height, and volcanic volatiles injections. In order to study different volcanic aerosol forcing and their climate impact, we perform simulations based on the fully coupled Community Earth System Model version 2 (CESM2) with the version 6 of the Whole Atmosphere Community Climate Model (WACCM6) with prognostic stratospheric aerosol and chemistry. In this study, explosive eruptions at 14.6 N and 63.6 N in January and July injecting 17 MT and 200 MT SO<sub>2</sub> at 24 km with and without halogens are simulated, in line with Central American Volcanic Arc and Icelandic volcanic eruptions. Simulated changes in the stratospheric sulfate and halogen burdens, and related impacts on aerosol optical depth, radiation, ozone and surface climate are analyzed. These simulated volcanic eruption cases will be compared with simulations based on the aerosol-climate model MAECHAM5-HAM.</p>


2021 ◽  
Author(s):  
Ilaria Quaglia ◽  
Christoph Brühl ◽  
Sandip Dhomse ◽  
Henning Franke ◽  
Anton Laakso ◽  
...  

<p>Large magnitude tropical volcanic eruptions emit sulphur dioxide and other gases directly into the stratosphere, creating a long-lived volcanic aerosol cloud which scatter incoming solar radiation, absorbs outgoing terrestrial radiation, and can strongly affect the composition of the stratosphere.</p><p>Such major volcanic enhancements of the stratospheric aerosol layer have strong “direct effects” on climate via these influences on radiative transfer, primarily surface cooling via the reduced insolation, but also have a range of indirect effects, due to the volcanic aerosol cloud’s effects on stratospheric circulation, dynamics and chemistry.</p><p>In this study, we investigate the 3 largest volcanic enhancements to the stratospheric aerosol layer in the last 100 years (Mt Agung 1963; Mt El Chichón 1982; Mt Pinatubo 1991), comparing co-ordinated simulations within the so-called HErSEA experiments (Historical Eruptions SO2 Emission Assessment) several national climate modelling centres carried out for the model intercomparison project ISA-MIP.</p><p>The HErSEA experiment saw participating models performing interactive stratospheric aerosol simulations of each of the volcanic aerosol clouds with common upper-, mid- and lower-estimate amounts and injection heights of sulfur dioxide, in order to better understand known differences among modelling studies for which initial emission gives best agreement with observations. </p><p>First, we compare results of several models HErSEA simulations with a range of observations, with the aim to find where there is agreement between the models and where there are differences, at the different initial sulfur injection amount and altitude distribution.</p><p>In this way, we could understand the differences and limitations in the mechanisms that controls the dynamical, microphysical and chemical processes of stratospheric aerosol layer.</p>


2021 ◽  
Author(s):  
Clarissa Kroll ◽  
Hauke Schmidt ◽  
Claudia Timmreck

<p>Large volcanic eruptions affect the distribution of atmospheric water vapour, for instance through cooling of the surface, warming of the lowermost stratosphere, and increasing the upwelling in the tropical tropopause region.</p><p>To better understand the volcanic impact on the tropical tropopause region and associated changes in the water vapour distribution in the stratosphere we employ a combination of short term convection-resolving global simulations with ICON and long term low resolution ensemble simulations with the MPI-ESM1.2-LR EVAens<strong>, </strong>both with prescribed volcanic forcing. With the EVAens a long term statistical analysis of the water vapour trends during the build-up and decay of a volcanic aerosol layer is made possible. The impact of the heating in the cold point regions is studied for five different eruption magnitudes. Stratospheric water vapour changes are analyzed in simulations with synthetic and observation based aerosol profiles showing that the distance of the aerosol profile from the cold point region can be more important for the water vapour entry into the stratosphere than the emitted amount of sulfur.</p><p>Whereas the EVAens is ideal to investigate the slow ascent of water vapour into the stratosphere the 10 km high resolution simulations with ICON allow insights into the convective changes after volcanic eruptions going beyond the limitations parameterizations usually impose on the model data.</p>


2021 ◽  
Author(s):  
Matthew Toohey ◽  
Yue Jia ◽  
Susann Tegetmeier

<p>The cumulative radiative impact of major volcanic eruptions depends strongly on the length of time volcanic sulfate aerosol remains in the stratosphere. Observations of aerosol from recent eruptions have been used to suggest that residence time depends on the latitude of the volcanic eruption, with tropical eruptions producing aerosol loading that persists longer than that from extratropical eruptions. However, the limited number of eruptions observed make it difficult to disentangle the roles of latitude and injection height in controlling aerosol lifetime. Here we use satellite observations and model experiments to explore the relationship between eruption latitude, injection height and resulting residence time of stratospheric aerosol. We find that contrary to earlier interpretations of observations, the residence time of aerosol from major tropical eruptions like Pinatubo (1991) is on the order of 24 months. Model results suggest that the residence time is greatly sensitive to the height of the sulfur injection, especially within the lowest few kilometers of the stratosphere. As injection heights and latitudes are unknown for the majority of eruptions over the common era, we estimate the impact of this uncertainty on volcanic aerosol forcing reconstructions. </p>


2021 ◽  
Vol 21 (5) ◽  
pp. 3317-3343
Author(s):  
Margot Clyne ◽  
Jean-Francois Lamarque ◽  
Michael J. Mills ◽  
Myriam Khodri ◽  
William Ball ◽  
...  

Abstract. As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth.


Sign in / Sign up

Export Citation Format

Share Document