How Many Water Molecules in the Hydration Shell of 18-Crown-6? Monte Carlo Simulations Based on ab Initio-Derived Potential Energy Surface

2003 ◽  
Vol 107 (17) ◽  
pp. 4175-4181 ◽  
Author(s):  
Sriprajak Krongsuk ◽  
Teerakiat Kerdcharoen ◽  
Supot Hannongbua
2011 ◽  
Vol 115 (25) ◽  
pp. 6918-6926 ◽  
Author(s):  
Grégroire Guillon ◽  
Alexandre Zanchet ◽  
Markku Leino ◽  
Alexandra Viel ◽  
Robert E. Zillich

1990 ◽  
Vol 45 (8) ◽  
pp. 1009-1015 ◽  
Author(s):  
Chiara Margheritis

AbstractMonte Carlo simulations of muscarine water solution were carried out using ab-initio SCFLCAO- MO interaction potentials. The overall results indicate that in water solution the preferred conformation, on the basis of enthalpic considerations, should be the one having the dihedral angle H02-02-C4-H4, τ, equal to 180°. The molecule shows a first hydration shell with about 35 water molecules: of these only about 25 are constantly present, 18 are at a distance equal to lower than 2.5 A and only 5 have an interaction energy larger than -21 kJ/mole. The results do not support the hypothesis that the role of Ol in muscarinic activity is that of increasing hydrophylic bonds


2020 ◽  
Author(s):  
Shi Jun Ang ◽  
Wujie Wang ◽  
Daniel Schwalbe-Koda ◽  
Simon Axelrod ◽  
Rafael Gomez-Bombarelli

<div>Modeling dynamical effects in chemical reactions, such as post-transition state bifurcation, requires <i>ab initio</i> molecular dynamics simulations due to the breakdown of simpler static models like transition state theory. However, these simulations tend to be restricted to lower-accuracy electronic structure methods and scarce sampling because of their high computational cost. Here, we report the use of statistical learning to accelerate reactive molecular dynamics simulations by combining high-throughput ab initio calculations, graph-convolution interatomic potentials and active learning. This pipeline was demonstrated on an ambimodal trispericyclic reaction involving 8,8-dicyanoheptafulvene and 6,6-dimethylfulvene. With a dataset size of approximately</div><div>31,000 M062X/def2-SVP quantum mechanical calculations, the computational cost of exploring the reactive potential energy surface was reduced by an order of magnitude. Thousands of virtually costless picosecond-long reactive trajectories suggest that post-transition state bifurcation plays a minor role for the reaction in vacuum. Furthermore, a transfer-learning strategy effectively upgraded the potential energy surface to higher</div><div>levels of theory ((SMD-)M06-2X/def2-TZVPD in vacuum and three other solvents, as well as the more accurate DLPNO-DSD-PBEP86 D3BJ/def2-TZVPD) using about 10% additional calculations for each surface. Since the larger basis set and the dynamic correlation capture intramolecular non-covalent interactions more accurately, they uncover longer lifetimes for the charge-separated intermediate on the more accurate potential energy surfaces. The character of the intermediate switches from entropic to thermodynamic upon including implicit solvation effects, with lifetimes increasing with solvent polarity. Analysis of 2,000 reactive trajectories on the chloroform PES shows a qualitative agreement with the experimentally-reported periselectivity for this reaction. This overall approach is broadly applicable and opens a door to the study of dynamical effects in larger, previously-intractable reactive systems.</div>


2020 ◽  
Vol 494 (4) ◽  
pp. 5675-5681 ◽  
Author(s):  
Sanchit Chhabra ◽  
T J Dhilip Kumar

ABSTRACT Molecular ions play an important role in the astrochemistry of interstellar and circumstellar media. C3H+ has been identified in the interstellar medium recently. A new potential energy surface of the C3H+–He van der Waals complex is computed using the ab initio explicitly correlated coupled cluster with the single, double and perturbative triple excitation [CCSD(T)-F12] method and the augmented correlation consistent polarized valence triple zeta (aug-cc-pVTZ) basis set. The potential presents a well of 174.6 cm−1 in linear geometry towards the H end. Calculations of pure rotational excitation cross-sections of C3H+ by He are carried out using the exact quantum mechanical close-coupling approach. Cross-sections for transitions among the rotational levels of C3H+ are computed for energies up to 600 cm−1. The cross-sections are used to obtain the collisional rate coefficients for temperatures T ≤ 100 K. Along with laboratory experiments, the results obtained in this work may be very useful for astrophysical applications to understand hydrocarbon chemistry.


Sign in / Sign up

Export Citation Format

Share Document