Binding of Gold Clusters with DNA Base Pairs:  A Density Functional Study of Neutral and Anionic GC−Aunand AT−Aun(n= 4, 8) Complexes

2006 ◽  
Vol 110 (24) ◽  
pp. 7719-7727 ◽  
Author(s):  
Anil Kumar ◽  
P. C. Mishra ◽  
Sándor Suhai
2008 ◽  
Vol 07 (06) ◽  
pp. 1147-1158 ◽  
Author(s):  
JUN LI ◽  
LIAN-CAI XU ◽  
SI-YAN LIAO ◽  
KANG-CHENG ZHENG ◽  
LIANG-NIAN JI

The theoretical studies on the electronic structure, DNA-binding, and absorption-spectral properties of "light switch" complex [ Ru ( phen )2( taptp )]2+ (phen = 1,10-phenanthroline; taptp = 4,5,9,18-tetraazaphenanthreno-[9,10-b]triphenylene) in aqueous solution have been carried out using density functional theory (DFT) and time-dependent DFT (TDDFT) methods. The results show the following: (i) The solvent effect makes all the frontier molecular orbital energies of complex to increase to a certain extent; however, the energies (ε LUMO + x) of some frontier unoccupied molecular orbitals (MOs) in aqueous solution are still negative and rather lower than those of the energies (ε HOMO - x) of some frontier-occupied MOs of DNA-base pairs, and thus the complex in aqueous solution is still an excellent electron-acceptor in its DNA-binding. (ii) The solvent effect further shows that simply increasing the conjugative planar area of intercalative ligand may be ineffective on the improvement of DNA-binding of the resulting complex because of going along with the increase in the LUMO (and LUMO + x) energy. It is the reason why the DNA-binding affinity of "light switch" complex [ Ru ( phen )2( taptp )]2+ is not better than that of the well-known complex [ Ru ( phen )2( dppz )]2+ yet. (iii) The three main experimental bands (~450 nm, ~360 nm, and ~290 nm) of the studied complex in aqueous solution were further well calculated, simulated, and explained by the TDDFT computations.


2013 ◽  
Vol 19 (10) ◽  
pp. 4585-4590 ◽  
Author(s):  
Menyhárt B. Sárosi ◽  
Petronela M. Petrar ◽  
R. Bruce King

2018 ◽  
Vol 63 (8) ◽  
pp. 709 ◽  
Author(s):  
S. Yu. Kutovyy ◽  
R. S. Savchuk ◽  
N. V. Bashmakova ◽  
D. M. Hovorun ◽  
L. A. Zaika

The interaction between the amitozinoberamid preparation (thiotepa-alkylated berberine) and a DNA macromolecule in the aqueous solution has been studied, by using the optical spectroscopy methods: electron absorption and fluorescence. The dependence of spectral characteristics on the concentration ratio N/c between the DNA base pairs and the ligand molecules is plotted. Using the system of modified Scatchard and McGhee–von Hippel equations, the parameters of the binding of amitozinoberamid to DNA are determined. A comparative analysis of the DNA interaction with amitozinoberamid, on the one hand, and berberine and sanguinarine alkaloids, on the other hand, is carried out. The structure and the spectra of electron absorption of thiotepa, berberine, and amitozinoberamid molecules are calculated in the framework of the density functional theory at the DFT B3LYP/6-31G(d,p) level.


Sign in / Sign up

Export Citation Format

Share Document