Structural and Electronic Properties of Hybrid Fluorographene–Graphene Nanoribbons: Insight from First-Principles Calculations

2011 ◽  
Vol 115 (33) ◽  
pp. 16644-16651 ◽  
Author(s):  
Shaobin Tang ◽  
Shiyong Zhang
2009 ◽  
Vol 1204 ◽  
Author(s):  
T. Urakawa ◽  
K. Shintani

AbstractThe structural and electronic properties of graphene nanoribbons (GNRs) modified by H, CO, and NH3 molecules at their edges under uniaxial strain is investigated by means of first principles calculations. It is found the bond length of the reconstructed edge of a H-terminated GNR modified by CO is larger than those of a bare GNR, a H-terminated GNR, and a H-terminated GNR modified by NH3. It is also found the band gaps of a H-terminated GNR and a H-terminated GNR modified by CO are twice the gap of a bare GNR, and the band gaps of a bare GNR and a H-terminated GNR increase with the increase of imposed strain.


2010 ◽  
Vol 24 (24) ◽  
pp. 4851-4859
Author(s):  
KAIHUA HE ◽  
GUANG ZHENG ◽  
GANG CHEN ◽  
QILI CHEN ◽  
MIAO WAN ◽  
...  

The structural and electronic properties of BN(5, 5) and C(5, 5) nanotubes under pressure are studied by using first principles calculations. In our study range, BN(5, 5) undergoes obvious elliptical distortion, while for C(5, 5) the cross section first becomes an ellipse and then, under further pressure, is flattened. The band gap of BN(5, 5) decreases with increasing pressure, which is inverse to that of zinc blende BN, whereas for C(5, 5) the metallicity is always preserved under high pressure. The population of charge density indicates that intertube bonding is formed under pressure. We also find that BN(5, 5) may collapse, and a new polymer material based on C(5, 5) is formed by applying pressure.


2021 ◽  
Author(s):  
Thi Nga Do ◽  
Son-Tung Nguyen ◽  
Khang Pham

In this work, by means of the first-principles calculations, we investigate the structural and electronic properties of a two-dimensional ZnGeN2 monolayer as well as the effects of strains and electric...


2019 ◽  
Vol 568 ◽  
pp. 1-5 ◽  
Author(s):  
Sheng-Hai Zhu ◽  
Han Qin ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Bin Tang ◽  
...  

2016 ◽  
Vol 4 (38) ◽  
pp. 8947-8952 ◽  
Author(s):  
A. Albar ◽  
U. Schwingenschlögl

Using first principles calculations, we investigate the structural and electronic properties of 3d transition metal doped SnO.


Sign in / Sign up

Export Citation Format

Share Document